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Abstract
Compressed pattern matching is a problem of performing pattern matching dir-

ectly in a compressed text. This paper compares the performance of Shapira/Klein's 

method ([1]) with Manber's ([2]), LZSS([3]) and “Decompress and Search” ones, where 

the “Decompress and Search” means searching the decompressed text. The methods are 

compared by (1) compression performance, (2) compression processing time, and (3) 

pattern matching processing time. Compression processing time and performance are 

also compared to those of the 'gzip' UNIX utility ([4], [5]). 

The compression method used in “Decompress and Search” is based on LZSS al-

gorithm ([3]). The pattern matching algorithms used in all three methods are based on 

KMP ([6]).

The Work Goal
The main purpose of this work is to assess the performance of Shapira/Klein's 

compression and pattern matching methods, by comparing it with another related meth-

ods.

The Work Methods
Each compared method is implemented and its performance is measured on 

standard data sets. The implementation language is Java.

1 Introduction 
1.1 Motivation for Compressed Pattern Matching

The general approach for looking for a pattern in a file that is stored in its com-

pressed form is first decompressing and then applying one of the known pattern matching 

algorithms on the decoded file. But decompression normally requires much more space 

and time than a search. As a result, files that are searched frequently are in many cases 

stored in their original form. Efficient compressed pattern matching method would allow 

these files to be stored in their compressed forms.
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1.2 Definition of Compressed Pattern Matching
Amir at al. [7] defines the compressed pattern matching as a problem of finding 

all occurrences of a pattern in a compressed text in time proportional to the compressed 

text's size. One approach to achieve this is first to compress the search pattern and then 

to search the compressed pattern in a compressed file. Manber's pattern matching al-

gorithm ([2]) uses this approach. Another approach, which approximates compressed 

pattern matching, is to search for the original pattern, but to decompress only the relev-

ant parts of the compressed file and to skip the irrelevant ones. Shapira/Klein's method 

[1] uses this second approach.

1.3 “Search During Decompress”
The “Decompress and Search” method is first decompressing and then searching 

within the decompressed file. One of the main disadvantages of this method is that it re-

quires the entire decompressed file to be stored in additional memory storage. One pos-

sible compromise between the compressed matching and the “Decompress and Search” 

method is to perform the search during decompression. It usually requires much smaller 

amount of additional memory than the “Decompress and Search” and might be fast 

enough in practice. This method can be applied to every compression method that allows 

decompression from left to right. Let us call this method “Decompress During Search”. 

This paper compares the performances of Shapira/Klein's [1] and Manber's [2] methods 

to both “Decompress and Search” and “Search During Decompress” in LZSS-com-

pressed text.

2 Overview of Compared Methods
 There are several principal approaches to handle the compressed matching prob-

lem. One of them is to try adapting some pattern matching algorithm to a given compres-

sion scheme. Both Manber's ([2]) and Shapira/Klein's ([1]) methods use a different road: 

they suggest changing the compression method itself to allow easy searching in the com-

pressed file. This approach was initially proposed by Manber ([2]). Shapira/Klein's meth-

od ([1]) strives to improve the compression performance achieved by Manber using a 

different compression scheme.
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2.1 Manber's Compression
Manber's compression method ([2]) uses the fact that although a byte can repres-

ent 256 different symbols, usually only a subset of them is actually used in an average 

text file. Manber's compression algorithm utilizes the unused symbols by replacing com-

mon pairs of characters by these unused symbols. The savings in space results from the 

fact that pairs of characters (two bytes) are replaced by single characters (one byte). The 

mapping between the replaced pairs and the new symbols is stored in the beginning of 

the compressed file. To search in a compressed file, the search pattern is first encoded 

using the mapping stored at the beginning of the file, and then the search is performed 

using any known pattern matching algorithm. However, the pairs to be replaced should 

be chosen with care, e.g. a word “wood” might be encoded either as wo od , or as 

? w oo d ? (here '?' could be any character, e.g. white space).  Manber's 

compression algorithm chooses the pairs that do not cause such ambiguities. Specifically, 

it chooses the most frequent pairs so that no character will be both a first character of 

some pair and a second character of (probably another) pair. Manber's compression 

method implementation is described in more details in section 3.1 .

Note that Manber's method confines itself  to bytes, i.e. every new character oc-

cupies exactly one byte. This means that virtually every known pattern matching al-

gorithm can be applied to search in the compressed file. Moreover, due to compression, 

the search time in Manber-compressed text is even smaller than in the original text! This 

is different from e.g. binary Huffman coding ([8]), which might be more efficient in terms 

of compression ratio, but using a bit based search it might require longer processing 

time. The reason is that in case of binary Huffman code ([8]), decoding a character re-

quires processing the compressed text bit by bit, which is much slower than reading char-

acters on a byte level. Another reason is that some fastest pattern matching algorithms al-

low skipping some text altogether, e.g. Boyer-Moor ([9]), and they cannot be applied to 

an adaptive compressed text.

2.2 Manber's Pattern Matching
The searching starts by reading the mapping between the old and new characters 

from the beginning of the compressed file. It then compresses the pattern using this map-
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ping. In some cases, the first and the last character of the pattern should be removed 

from the compressed search pattern. Some pattern matching algorithm is then invoked as 

a black box, to locate the compressed pattern in the compressed text. The output of the 

match is then decompressed. In case the first or last character of the pattern were re-

moved, this output is further filtered. Note that Manber's pattern matching does not im-

pose any restrictions on the core pattern matching algorithm. We used KMP pattern 

matching algorithm ([6]), which is briefly described in section 2.4 .

2.3 “Decompress and Search” Method: LZSS-Based 
Compression

In this method we use LZSS ([3]) to compress the original text. In LZSS, a text 

is encoded as a sequence of elements which are either single characters or pointers to 

previously occurring strings. These pointers are encoded as ordered pairs of numbers, 

denoted (off , len), where off is the number of characters from the current location 

to the previous occurrence of a sub-string matching the one that starts at the current loc-

ation, and len is the length of the matching string.

For example, the LZSS encoding of string “acdeabceabcdeaeab” is 

“acdeabc(4,4)(9,3)(7,3)”. Here the pair (4,4) represents a string “eabc”, 

which  already occurred 4 characters earlier and has a length of 4.

The basic LZSS algorithm allocates a fixed number of bits to off and len, thus 

bounding the maximum value of off and len. For example, if the number of bits alloc-

ated to off is 12, its value can not exceed 2121 . This value is called “text 

window size”. The pair (off, len) occupies an integer number of bytes, so the 

number of bits allocated to both off and len is usually chosen to be a multiple of 8, 

e.g. 12 bits for off and 4 bits for len. In fact, Williams ([10]) used 12-bits offset size 

and 4-bit length size to produce a very fast LZSS-based compression algorithm.

The compression ratio of LZSS can be improved if we don't fix the number of 

bits allocated to (off, len) pairs. For instance, the first (off, len) pair could occupy 

8 bits, since the values of off and len are small, while the second pair could occupy 24 

bits, since the values of off and len are big. But this requires a method to recognize 

the actual number of bits occupied by a specific (off, len) pair.  The method yielding 

the best compression ratio would be probably to use Huffman ([8]) or arithmetic coding 
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([11]) to encode (off, len) pairs as short as possible. Indeed, 'gzip' ([4], [5]) uses 

binary Huffman codings, one for all text characters and all  encountered values of len, 

and another one for all encountered values of off.  The main method used in this paper 

is different: it confines to a fixed number of (off, len) bit allocations. However, a 

method using two binary Huffman trees was also implemented. The details are described 

in section 3.2 . 

2.4 “Decompress and Search” Method: KMP Pattern 
Matching

To search for a string, we first decompress the entire file and then invoke the 

Knuth-Morris-Pratt (KMP) pattern matching algorithm ([6]) on the decompressed text. 

The algorithm KMP searches for occurrences of a search pattern S=S 1 S2. .. S n  

within a main "text string" T=T 1T 2...T k by employing the observation that when a 

mismatch occurs, the word itself embodies sufficient information to determine where the 

next match could begin, thus bypassing re-examination of previously matched characters. 

To do so, the algorithm first preprocesses the pattern S  to construct a “prefix 

function” π, which indicates where we need to look for the beginning of a new 

match in case the current one ends in a mismatch. Specifically, π[j], j≤∣S∣ is 

defined to be the length of the longest prefix of the pattern S[1,..,j] that is also a suffix of 

S[2,..,j]. The algorithm starts the search by comparing the characters of T to the charac-

ters of S. If a match was assumed to start at T[m], and a mismatch was found at 

T[m+i]≠S[1+i], the algorithm is able to conclude that the next possible match could 

only start at T[m + i - π[i]], so it will check T[m+i] versus S[π[i]]. This is 

in contrast to a naïve algorithm that in this case would check T[m+1] versus S[1]. The 

search time of the algorithm is O(|T| + |S|), since the position in T is never re-

duced. 

For example, let T=”abcabf...” and the pattern S=”abcabe”. The al-

gorithm first constructs the prefix function π with the following values:
π[0] = π[1] = 0

π[2] = 0

π[3] = 0

π[4] = 1

π[5] = 2
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π[6] = 0

The meaning of π[5] = 2, for example, is that there is a prefix of S of length 2 (i.e. 

“ab”) ending at S[5].  The algorithm starts the search at index 1 of the text by check-

ing character by character until it encounters a mismatch at index 6 (since T[6]='f' 

≠  S[6]='e'). This means that the match cannot start at T[1]. The naive algorithm 

would then check whether a match exists at T[2]. However, KMP is able to conclude 

immediately that the match cannot occur at T[2] and neither at T[3], and for a mo-

ment would assume a match starting at T[4] (since 4 = 1 + 5 – π[5]). But it 

would then immediately understand that this cannot happen by checking T[6] with 

S[3] and seeing that they differ.

2.5 “Search During Decompress” in LZSS-Compressed 
Text

As mentioned in section 1.3, the search times of Manber's [2] and Shapira/Klein's 

[1] algorithms are compared both to “Decompress and Search” and “Search During De-

compress” methods in LZSS-compressed text. The “Search During Decompress” al-

gorithm decompresses character after character, and feeds them into the KMP pattern 

matching algorithm ([6]) described above. The decompression stops once a desired num-

ber of matches is found or when it reaches the end of the input, if it looks for all matches. 

To reduce the memory usage, the decompression algorithm stores the decompressed 

characters in a simple circular buffer whose size equals the maximum text window 

size, in contrast to “Decompress and Search” algorithm which stores the entire decom-

pressed file.

2.6 Shapira/Klein's Method: Compression Algorithm
The purpose of the algorithm ([1]) is to change the LZSS compression scheme 

([3]) to allow searching for a string directly in the compressed text, in time proportional 

to the size of the compressed file, without the need to decompress the whole file before 

the search. This section describes the compression, while the pattern matching algorithm 

is described in the next section.

Unlike LZSS which replaces the reoccurring substring by a pointer (off, 

len), Shapira/Klein's method stores the pointers immediately after the strings they refer 

to. For instance, the string “abcdeabcdk”, encoded by LZSS as “abcde(5,4)k” 
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would now be encoded as “abcd(1,4)ek”. Here, '1' means that “abcd” occurs one 

character after the end of the first occurrence of “abcd” (i.e. after 'e'), while '4' is 

the length of the reoccurring string, as in LZSS.

The problem is that this method will not always work: for instance, in 

a1b2 c3d 4 e5a6 b7c8d 9d 10e11a12 k 13  (“abcdeabcddeak”) we would like to replace 

both the second occurrence of “abcd” (at index 6) and the second occurrence of “dea” 

(at index 10) by pairs (off, len). But after we replace the second occurrence of 

“abcd” by a pointer and the string  becomes “abcd(1,4)edeak”, the first occur-

rence of “dea” disappears, since it overlaps the pointer reference (1,4). Therefore, it 

is not clear where to place the pointer to the second 'dea'. 

The method solves this problem by introducing a third parameter, which the au-

thors call “slide”, to the pointer's structure, which now becomes a triple (off, 

len, slide). The text in the example above becomes “abcd(1,4)e(3,3,1)k”, 

where the triple (3,3,1) describes the second occurrence of the string “dea”. Slide 

1 here means that after replacing all pointers preceding the (3, 3, 1), it should be 

shifted 1 character forward: abc de 3,3,1a bcdk abcdea 3,3bcdk . The details 

on the 'slide' parameter as well as other implementation details are described in section 

3.3.

2.7 Shapira/Klein's Method: Pattern Matching 
Algorithm

The algorithm ([1]) searches for occurrences of a search pattern S within a text C 

compressed using Shapira/Klein's compression scheme described above. The algorithm 

traverses the text from left to right, partially replacing the pointers (off, len[, 

slide]). The  decompressed characters are fed into an underlying pattern matching al-

gorithm, which is used as a black box, as soon as the characters become available. Any 

left-to-right pattern matching algorithm can be used for this purpose, but to get an ad-

vantage from the method it should be able to efficiently skip any given number of suc-

cessive characters. We use a slightly modified KMP pattern matching algorithm ([6]) for 

this purpose.

The main idea is to use the fact that not all characters of the original text appear 

at the pattern. This fact can be used to perform only partial decompression, namely to 
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decompress only parts consisting of characters from the pattern and skipping the rest. 

The partially decompressed text is stored in a circular buffer, which holds the relevant 

characters at their proper places. Each block of successive relevant characters has a 

pointer to the next block, so the irrelevant characters are skipped not only during the 

partial decompression, but also during the search. The algorithm uses the fact that the 

(off, len[, slide]) pointers appear immediately after the strings they refer to in 

order to find out which characters can be skipped.

Let us show the process of partial decompression by an example. Let the pattern 

S=”dk” and the compressed text C=”dabcd(1,4)ek” (which corresponds to the 

original text ”dabcdeabcdk”). Let us use '$' to designate irrelevant characters. 

First, the algorithm processes the first five characters of the text (“dabcd”), character 

after character. The buffer becomes “d$$$d”, where the first 'd'  has also a pointer to 

the second 'd'. Next, it partially replaces the pointer (1,4), skipping the first three 

characters of the original string and copying only 'd' to the corresponding place at the 

buffer, which now becomes d $ $ $ d $ $ $ $ d . Finally, it copies 'e' and 'k' into the 

buffer, which now becomes d $ $ $ d $ $ $$ dk and finds the appearance of “dk”.  

Note that the search time is proportional to the size of the compressed file only in 

the best case, in which most character blocks pointed by the pointers do not contain the 

“relevant” characters. In addition, even in the best case, the search time target is reached 

only when no additional encoding is applied to the pointers and characters produced by 

the basic Shapira/Klein's compression algorithm. When an additional encoding (such as 

binary Huffman encoding) is applied to the output of the basic Shapira/Klein's algorithm, 

the search time is no longer proportional to the size of the compressed file.

The implementation details of the algorithms are described in section 3.4.

2.8 Byte-Based Compression Methods
Let us emphasize that the main implementations of all compression methods used 

in this paper are based on a byte format, for search efficiency. A bit-format compression 

was implemented for LZSS compression only, but used only to verify the compression 

effectiveness achieved by other methods. The problem with a bit-format compression is 

that while improving the compression ratio it also increases the search time in the com-

pressed text. Let us examine each of the compared methods.
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Manber's method: staying with a byte format allowed a search in Manber-com-

pressed text to be even faster than a search in the original text, which would be im-

possible to achieve if a bit-format compression was also applied. Manber explicitly rejec-

ted a bit-format compression in order to improve the search time. 

Shapira/Klein's method: one of the main goals of Shapira/Klein's method was 

to improve the search time, probably at the cost of compression efficiency. In our paper 

we assumed that decoding of binary Huffman-encoded characters and pointers would 

take most of the search time, which would shadow any search time improvement in Sha-

pira/Klein's compressed text over the search in LZSS-compressed text. This assumption 

requires verification, but it is not in the scope of this work. 

LZSS method: for the sake of consistency, the main implementation of LZSS 

used in all comparisons also stays with a byte format. Still, to compute the penalty of 

staying with a byte format  to the compression ratio, a bit-format LZSS compression was 

also implemented. The compression ratio of both bit-format and byte-format implementa-

tions is compared to that of 'gzip'. This allows to verify the efficiency of our imple-

mentations of LZSS algorithm in terms of compression performance (and Shapira/Klein 

method's implementation which is based on that of LZSS).

Computing the search time penalty of employing a bit-format compression in all 

compared methods (Manber, LZSS and Shapira/Klein) is  outside of the scope of this pa-

per.

3 Implementation Details
This section describes the implementation details of the methods used in the com-

parison. 

3.1 Manber's Compression Implementation
3.1.1 Reduction to Maximum Cut Problem

As described in section 2.1, the main idea of Manber 's compression ([2]) is to re-

place the most frequent pairs of characters (2 bytes) by new symbols (1 byte). To allow 

searching, the pairs are chosen so that no character will be both a first character of some 

pair and a second character of (probably another) pair.  This problem is reduced to the 

problem of finding the maximum cut in a graph. The vertices are single characters, the 
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edges are pairs of characters, and the edge weights are the frequencies of the pairs in the 

original text. The problem of finding the most frequent non-overlapping pairs of charac-

ters is equivalent to the problem of finding the maximum-weight cut in this graph. 

3.1.2 Dealing with “Rare” Characters
In the original paper, the input data is assumed to contain only characters in the 

range [0, 127]. Characters from range [128, 255] are considered 'rare' and are encoded 

as 2 bytes. For this purpose, a code '255' is considered special and is used to indicate the 

encoding of the rare characters. Any character that is considered 'rare' will be replaced by 

two symbols: first '255' and then the character itself. 

In our implementation, we do not assume anything about the input. Instead, char-

acters with frequency less than a user-specified threshold parameter are considered ‘rare’ 

and are encoded as 2 bytes, as described above. All other characters are considered 

'frequent' and are matched to a 1-byte symbol in the new alphabet.

Note that since the symbol '255' is reserved, if the input contains all 256 different 

characters, at least one character must be considered 'rare', even if  no pairs are going to 

be chosen (since there are 256 different characters and at most 255 possible encodings).

3.1.3 Translation Table
The translation table from the new symbols to the old characters and character 

pairs is stored at the beginning of the compressed file. Let us describe the details of the 

format in which it is stored in the compressed text.

Let N be the number of 'frequent' characters, N<=255. These characters are 

mapped to codes from 0 to N-1. The most frequent pairs of characters are mapped to 

codes from N to 254. As it was mentioned above, the code 255 is reserved to deal with 

'rare' characters. The format for writing the translation table is:

• Size of single-character alphabet (N), 1 byte

• Size of character pairs alphabet, 1 byte

• All single characters from the single-character alphabet in the correct order. That 

is, the character encoded as '0' appears first, followed by the character encoded as 

'1' etc., total N characters. Each character takes 1 byte.

• All chosen character pairs in the correct order, each pair takes 2 bytes.
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The total number of encoded characters varies from 1  for an alphabet consisting of a 

single character to 255, and each encoded character may take either 1 or 2 bytes in the 

table. Hence, the dictionary's size may vary from 2+1=3 to no more than 2+255*2 bytes.

3.1.4 The Main Compression Algorithm
Input: arbitrary text 

Output: Manber-compressed text

Algorithm:

1. Read in the original text and count the frequencies of each character and each 

character pair.

2. Find all 'frequent' characters, i.e. characters with a frequency greater or 

equal to the user-specified threshold. Let N be the number of 'frequent' 

characters. 

3. Assign each such character a new code in a range [0, N-1].

4. Compute (255-N) the most frequent non-overlapping pairs, using the maxim-

um-weight cut algorithm – see section 3.1.5.

5. Assign a unique code in the range [N, 254] for each chosen pair of characters. 

6. We received a static dictionary of size at most 2*255 bytes. Write this dictionary 

to the output.

7. Encode the original text using this dictionary.

3.1.5 Maximum-Weight Cut Algorithm
As it was already mentioned in the previous section, the problem of finding the 

most-frequent non-overlapping character pairs can be reduced to the problem of finding 

the maximum cut in a directed weighed graph. In this graph, the vertices are single char-

acters, the edges are pairs of characters, and the edge weights are the frequencies of the 

pairs in the original text. It turns out that this problem is NP-complete, so Manber sug-

gests an approximation algorithm based on a local search. 

The algorithm works as follows: randomly choose an initial partition of vertices 

into 2 groups, and then try to improve the solution by moving each character from one 

group to the other. To improve the results, this process can be repeated. The number of 

repetitions is a user parameter. 
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Let us now describe the algorithm in more details. Let V be the set of all vertices, 

V1 and V2 be the two groups of vertices defining the cut. We wish to find a maximum-

weight cut {V1, V2} in this graph and then choose the N  heaviest edges from this cut, 

where N is the input of the algorithm. The algorithm uses two arrays W1 and W2 of size 

∣V∣ whose meaning will be explained in the next section.

Input:  

• Directed weighed graph G(V, E) 

• N – the required number of heaviest edges

• X – the number of trials 

Output: 

N non-overlapping edges with maximum sum weight (two edges are overlapping if they 

share a vertex) 

Algorithm:

1. Repeat X times {

2. Randomly assign each vertex to either V1 or V2 with equal probability

3. For each vertex v in V, compute two values:

4. W 1 [v ]=∑
u∈V 1

weight uv

5. W 2[v ]=∑
u∈V 2

weight vu 

6. Put all vertices of V into a queue Q

7. While Q is not empty {

8. Pop v from Q

9. Compare W1[v] and W2[v] to decide whether switching v to the other 

group will increase the {V1, V2} cut.

10. If switching v to the other group will increase the cut weight {

11. Switch v to the other group

12. For each vertex u≠v, update W1[u] and W2[u] by adding or 

subtracting a weight of edge ‘uv’ or ‘vu’

13. For each vertex u≠v that is not in Q, compare W1[u] and W2[u] 

to decide whether switching u to the other group will in-

crease the 
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{V1, V2} cut. If yes, push ‘u’ to Q

14. }

15. }

16. Update the best solution – N most heaviest edges from the maximum cut

17. }

18. Output N edges of the cut with the maximum weight

3.1.6 Data Structures for the Maximum-Weight Cut Algorithm
Manber's paper does not specify how to check whether switching a vertex to the 

other group will increase the cut, but this is the most frequent operation (step 13 of the 

algorithm). To do it in constant time, we used two arrays, W1 and W2, of size ∣V∣ . 

W1[v] specifies  the total weight of all edges from the first group into v: 

W 1 [v ]=∑
u∈V 1

weight uv . W2[v]  specifies the total weight of all edges from v to the 

second group: W 2[v ]=∑
u∈V 2

weight vu  . The vertex ‘v’ may belong to either of the 

two groups, it is not important for the computation of W1 and W2.

W1[v] and W2 [v] are updated each time a vertex v switches a group (step 12 

of the algorithm). To do so, we add or subtract the weight of an edge ‘uv’ or ‘vu’ 

to/from W1[u] and W2[u] for each vertex u≠v. 

3.2 LZSS Compression Implementation
This section describes the details of LZSS algorithm ([3]) and its implementation. 

As described in section 2.3, a text is encoded as a sequence of elements which are either 

single characters or pointers of kind (offset, length)  to the previously occurred 

strings. We will sometimes refer to the previous occurrence of the current string as a 

'match'. Let us also define “the best” previous occurrence of the current 

string as the one for which replacing the current string by the pointer saves the maximum 

space in the output.

3.2.1 Outline of LZSS Algorithm
Input: 

• Text, T
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• Maximum allowed text window size, W

Output: LZSS-compressed text

Algorithm:

1.  Let p be the current position at the original text, p=1

2. while p < length of T {

3. Find “the best” previous occurrence of the current string 

 (the current string is the substring of T starting at 'p').

Let (off, len) be the pointer to it from position p.

4. If such previous occurrence has been found

5. and replacing the current string by the pointer will save a space

6. then {

7. Write the pointer (off, len), probably additionally encoded

8. p ← p+len

9. Update the data structure used to find the strings previous occurrences

 with 'len' strings starting at

 T[p], T[p+1], …,and T[p+len-1]. 

10. } otherwise {

11. Write the original character T[p], probably additionally encoded

12. p ← p+1

13. Update the data structure used to find strings previous occurrences

 with a string starting at T[p].

14. }

15. }

Note that the maximum allowed text window size W, was listed as 

input to the algorithm rather than a regular user parameter, since it affects not only the 

quality and the speed of the compression process itself, but also a time required to de-

compress the output of the compression algorithm. Note also that the maximum allowed 

text window size is actually the maximum allowed value for 'offset' that can be used 

in (offset, length) pair.
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3.2.2 Implementation Choices
The algorithm has been implemented using several different ways. User paramet-

ers control which implementation is actually run. 

First, there are two main methods to encode the characters and pointers: the 

byte-format implementation and the bit-format one. The byte-format 

method always uses an integer number of bytes to encode a single character or pointer, 

i.e. a pointer can be encoded to span 1, 2, 3 or 5 bytes, but cannot span 17 bits. In con-

trast, the bit-format implementation has no such restriction. The bit-format im-

plementation yields a better compression ratio than the byte-format one, but it takes 

more time to search inside or decompress the text compressed using the bit-format 

method. The implementations differ in steps 7 and 11 of the algorithm. They also differ 

in defining the meaning of the “best” match among several ones, in step 3 of the al-

gorithm.

Second, three ways to store and find strings previous occurrences were imple-

mented. This corresponds to steps 3, 9 and 13 of the algorithm. 

The user can combine either byte-format or bit-format implementation 

with any method of finding strings previous occurrences, independently.

3.2.3 Finding a Previous Occurrence of the Current String
Let us define the current string as the string starting at the current po-

sition. This section describes the data structures used to store and find the strings previ-

ous occurrences.

Let us see an example of string's previous occurrences. Let T=

a1b2 c3 d 4a5b6 a7b8 c9 d 10 e11 and p=7. The longest previous occurrence of the current 

string starts at position 1 and has a length of 4 characters ('abcd'). Another previous 

occurrence starts at position 5 and has a length of 2 characters ('ab'). 

Which occurrence to prefer is a matter of a specific implementation. In general, 

the best occurrence maximizes the difference in the number of bits that would take to 

write the occurrence as is and the number of bits that would take to write the (off-

set, length) pair. For the simplest case when no additional encoding is applied to 

characters and pointers, the best occurrence is the longest occurrence.  When an addi-

tional encoding is applied to characters and pointers, the most common heuristics is to 
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find the most recent occurrence among the longest ones. The criteria for choosing one 

pointer over the other depends on whether the byte-format or the bit-format 

implementation is used. The criteria are described later, in sections 3.2.4 and 3.2.5.

Finding a previous occurrence of a current string is usually the bottleneck of 

LZSS compression algorithm. Finding the really best match might be too expensive, so 

we look for a match that will be as close to the best as possible. Three techniques were 

implemented to search for the previous occurrence of a current string. The first one uses 

a hash table, the second one uses suffix trees ([12], [13]), and the third one combines the 

two previous techniques to yield the better result.

3.2.3.1 Finding a Previous Occurrence Using a Hash Table

This technique uses a hash table to find previous occurrences of a current string. 

The hash index is computed for the first 'k' bytes of each string, where 'k' is a user 

parameter (typically 3 or 4). Strings are stored as a position in the original text, so stor-

ing each string takes a constant amount of storage. The hash buckets are circular buffers 

of a fixed size, which is also a user parameter. When a bucket is full and a new string is 

going to be inserted, the algorithm removes the oldest string from this bucket. The hash 

value is computed by the following formula:

hash a1a2 ... ak=31∗hasha1 ...ak−1ak , hasha1=a1

which is similar to how the String class hash function is implemented in Java. (In contrast 

to Java, each ai here represents a byte, while Java strings consist of 2-byte characters). 

To make the run time independent of the value of 'k', the algorithm computes the hash 

value for the next string from the previous hash value. 

hashnewa p ...a pk−1=31∗hashold−31k−1∗a p−1a pk−1

Each bucket stores the starting position of a string whose prefix matches the pre-

fix of a1... ak . If a matching bucket is found, the algorithm explores the bucket to find 

the “best” match among all the strings stored in the bucket. 

For example, let T= a1b2 c3 a4b5c6d 7 , and k=3. If the allowed bucket size is 

greater than 1, then the bucket corresponding to the key hash('abc') will contain 

two strings: the first starting at position 1 of T and the second starting at position 4 of T. 

Otherwise, the string starting at position 1 of T will be removed before the insertion of 

the string starting a position 4.
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The problem with this technique is that it does not always find the longest match 

since the maximum allowed bucket size is usually small (1-10 entries). Increasing this 

number increases the chances to find longer matches, but also increases the running time, 

which is proportional to the maximum allowed size of the buckets. The advantage of this 

technique is that it always finds the most recent matches. This allows to keep the size of 

'offset' small, which may result in smaller space taken by (offset, length) 

pair.

3.2.3.2 Finding a Previous Occurrence Using Suffix Trees

This technique uses two suffix trees ([12]) to find the longest previous occur-

rence of a given string. 

A suffix tree is a data structure that presents the suffixes of a given string T in a 

way that allows fast search for any substring of T.  If such a substring does not exist in 

the tree, the tree allows to find the longest prefix of the substring that is present in T. 

The search time is O(match length), which theoretically makes it the fastest pos-

sible data structure to find the longest prefix of a given pattern in a text T. The edges of 

a suffix tree are labeled with strings, such that each suffix of T has one-to-one corres-

pondence to a path from the tree's root to a leaf. Another important property of a suffix 

tree is that any internal node has at least two children. To satisfy this property, T is pad-

ded with a terminal symbol not seen in T. This ensures that no suffix is a prefix of anoth-

er, and that there will be n leaf nodes, one for each of the n suffixes of T. 

There is a linear-time online-construction algorithm of Ukkonen ([14]). It builds 

the suffix tree by inserting character after character, from left to right, so inserting a 

single suffix takes a constant time on average. Mark Nelson ([13]) gives a very good de-

scription of suffix trees and the Ukkonen algorithm ([14]).

At a first glance, a single suffix tree can provide the functionality of storing and 

finding the string's previous occurrences, as required by the LZSS algorithm. It can find 

the longest previous occurrence of a given string in time linear to the length of the 

match. 

However, a suffix tree has two drawbacks: first, it always finds the oldest pos-

sible occurrence of a string, and second, there is no effective mechanism to remove old 

nodes from a suffix tree. This poses three problems: first, the occurrence it finds may vi-
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olate the 'maximum text window size' requirement (i.e. the maximum allowed 

value for 'offset'), even if a valid newer occurrence exists. Second, older occur-

rences have larger offset values than the newer ones, which results in less effective 

encoding, since larger values require more space than smaller ones. Third, a suffix tree of 

the entire input text requires too much memory.

Let us see why a suffix tree always finds older occurrences by an example. Let 

T= a1 a2b3a4 a5b6 X 7 X 8 X 9 a10 a11 . After the fifth iteration the tree will look as fol-

lows:

It is easy to see that a search for 'aa' in such a tree yields T[1,2], and not T[4,5]. 

The problem is that there is no explicit leaf on which to store the newer position of 

'aa'.

Artificially creating an explicit node to store newer position would violate the 

property of a suffix tree that each internal node should have at least two children and 

empty edges are not allowed.  

Removing too old occurrences would solve the first and the third problem. 

Larsson ([15]) describes an algorithm that allows removing old nodes, but the algorithm 

is not easy to implement. Instead, our implementation “imitates” a suffix tree with node 

removal by using two overlapping suffix trees, where each suffix tree is constructed us-

ing the Ukkonen's algorithm ([14]). The size of a string represented by a tree cannot ex-

ceed the maximum text window size W. When the first tree is half-full (i.e. of size W/2), 

the second tree is created and starts growing. When the first tree becomes full, it is 

cleared, and the second tree becomes the “active” tree used for searches etc.

For example, let us see the behavior of the trees for W=32K:

'baa' (positions 3 to 5 in S)'a' (position 1 in S)

'abaa' 
     (positions 2 to 5 in S)

'baa' (positions 3 to 5 in S)



(19)

•  On 0-16K: insert values into tree#1, use tree#1 for search

•  On 16K-32K: insert values into both trees, use tree#1 for search

•  On 32K: clear tree#1, start using tree#2 for search

•  On 32-48K: insert values into both trees, use tree#2 for search

•  On 48K: clear tree#2, start using tree#1 for search

•  On 48-64K: insert values into both trees, use tree#1 for search

•  etc.

 Clearly, this way the longest match within the window size can be missed, since 

after the trees are just switched, the tree used for searching is only half-full. Still, the 

technique seems to find longer matches than a hash-based one. Let us repeat that the de-

scribed method does not solve the second problem, that is it still tends to find older oc-

currences, requiring larger offset values and thus taking more space to encode. 

Another trick used in our implementation of a suffix tree deals with potentially 

large number of a node's children. Since there are 256 different bytes, a node can have as 

many as 256 children. To keep the search fast we could allocate an array of size 256 in 

every internal node, but it may require too much memory. We used the technique of 

Mark Nelson ([13]), which is to store all children in a single global hash table. The hash 

key is computed from the first byte of the edge and the parent node's number. 

 To summarize, the suffix trees technique was able to find long, but old matches. 

Due to the trick of using two trees all found matches are legal. However, preferring old 

matches may result in a less effective compression, due to larger offsets. Suffix trees may 

be changed to find more recent matches, but this has not been done in our implementa-

tion.

3.2.3.3 Finding a Previous Occurrence Using both Hash Table and Suffix Trees

This technique strives to combine the benefits of both approaches. The technique 

that uses two suffix trees tends to find matches that are almost as long as possible, but 

which might be located far from the current position. In contrast, hash tables tend to find 

matches located as close as possible to the current position, but which might be not very 

long. The technique that uses both methods compares the match found by the suffix tree 

method with the one found by the hash table and then chooses the “best” match. The 

meaning of the “best” depends on a specific implementation (either byte-format LZSS, 
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bit-format LZSS or byte-format Shapira/Klein), see sections 3.2.4.2, 3.2.5.4, and 3.3.4 

for details.

3.2.4 Byte-Format Implementation of LZSS
This section describes the byte-format method to additionally encode characters 

and pointers (steps 7 and 11 of the algorithm). In this method each encoded character or 

pointer should take an integer number of bytes. 

The encoding is as follows. Characters are not encoded, i.e. they are written as is. 

(Offset, length) pairs are encoded using a number of predefined “encoding 

rules”. Each encoded pair takes an integer number of bytes. The details will be de-

scribed in section 3.2.4.1. To differentiate between regular characters and pointers, each 

8 elements (characters or pointers) are prefixed with a special byte, as suggested by 

([12). Each bit of this byte corresponds to one of the 8 elements following the byte. Bit 

0 means that the element is a regular character, while bit 1 means that the element is a 

pointer. For example, the byte 0 00 00 110 of value 6 will prefix the following se-

quence of LZSS elements: abcde 4,3 6,4 k . Similar to ([10]), each character is writ-

ten as is, always spanning a single byte. But pointers are written differently: in ([10]), 

offsets always span 12 bits (thus bounding the text window size by 212 ) and 

lengths always span 4 bits, thus yielding 2 bytes for a pointer. In contrast, in our im-

plementation the text window size is a user parameter which may be as large as 232 , 

and the pointers may span from 1 to 7 bytes, as described in the next section.

3.2.4.1 Bits Allocation for (offset,length) Pairs

(Offset, length) pointers are encoded using a number of predefined “en-

coding rules”. Each rule specifies the exact amount of bits allocated for offset, and 

the exact amount of bits allocated for length. Each rule is prefixed with a rule identifi-

er, indicating the specific rule. The total number of bits, used for rule identifier, offset 

and length always sums to a multiple of 8, thus forming an integer number of bytes. 

Given a specific (offset, length) pair, the algorithm looks for the shortest 

matching rule that could  handle this pair. Note that all rules are fixed and known before 

the compression process.

For example, let (500, 4) be a specific (offset, length) pair, and sup-

pose there are two “encoding rules”. The first rule allocates 2 bits for the rule identifier, 
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4 bits for offset and 2 bits for length, the second rule allocates 3 bits for the rule 

identifier, 10 bits for offset and 3 bits for length. Using the first rule allows to en-

code a pointer by a single byte, using the second rule allows encoding a pointer by two 

bytes. Note that rules identifiers may span a different number of bits in different rules: we 

may wish to encourage the use of shorter rules giving them shorter identifiers and thus 

more space to store the actual data. Since the maximum offset value that can be 

stored using the first rule is 24=16 (offset '0' is illegal), it cannot store our pointer. The 

maximum offset value that can be stored using the second rule is 210=1024 , so it 

will be used.

Note that since all rules exist prior to compression, some of them might be irrel-

evant for the given maximum text window size W. Continuing the example, if W=1024, 

and a third rule allocates 18 bits for offset and 3 bits for length, it would be irrelev-

ant, since no offset can be larger than W, so every legal pointer matching the third rule 

would also match the second one. But if the third rule allocates more than 3 bits for 

lengths, it still can be relevant, to handle pointers with small offsets, but large 

lengths.

If pointer's length value is too large for a certain rule, there are choices: to cut 

the length to match a smaller rule or to use a rule with larger length. To make the 

rules more efficient, each rule also specifies the minimum value of  'length' of 

(offset, length) pair for which it can be applied. This allows to use its bits alloc-

ated for length more efficiently. Referring to the example above, the first rule can spe-

cify that its minimum length is 3, so that the maximum length it can store using its 

2 bits allocated for length is 6 (that is: 3, 4, 5, 6) and not 4. (The same could be done 

for offsets, but it was not implemented, for simplicity).

After running some experiments, the encoding for the rule identifiers was chosen 

as follows. Rules are sorted from shortest to longest, and each rule gets its sequence 

number, which is also its identifier, counting from 0. This number is written in unary 

format, i.e. the identifier of the first rule is '0', the identifier of the second one is '10', the 

identifier of the third one is '110'. At a first glance, this unary encoding may seem to be 

very inefficient, still the experiments show that it beats binary encoding, for example, in 

which all identifiers span a fixed number of bits, e.g. 3. The reason is that the unary en-
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coding of identifiers maximizes the usage of short rules over the longer ones. For ex-

ample, it requires only 1 bit for the first, single-byte rule, leaving 7 bits to store a pointer. 

In contrast, a binary encoding with a fixed number of bits, say 3, would leave only 5 bits 

to store a pointer in a single byte. This means that many pointers that can be stored in a 

single byte using the unary approach will be stored in two bytes with the binary ap-

proach.

Each rule encodes a pointer to a different number of bytes, i.e. a pointer encoded 

by the first rule spans a single byte, a pointer encoded by the second rule spans two bytes 

etc. There are 7 rules total, so a pointer can span at most 7 bytes. 

One could argue that this is not purely a byte-format encoding. But with a trick 

described in section 3.2.4.3, identification of an encoding rule takes exactly one array ac-

cess operation, regardless of the number of bits allocated to a rule identifier. Once the 

“encoding rule” is known, the offset and length may be obtained by one or two bit 

shift operations, which is also very fast. In contrast, decoding a binary Huffman-encoded 

character requires a move on a Huffman tree for every bit of the input. The trick de-

scribed in section 3.2.4.3 can also be used to decode binary Huffman-encoded symbols, 

but it either cannot guarantee a single array access operation for every symbol or can re-

quire too large array, whose preparation can also take a time. Note also that the encoded 

text is aligned on bytes, in contrast to e.g. Huffman encoding.

3.2.4.2 Assessing Possible Replacements of the Current String

Knowing in advance all possible encodings for (offset, length) pair has 

an advantage that we can precisely measure how much space will be saved by replacing 

the current string by the pointer. This means that the “best” match for this method is not 

always the longest match.

For example, let p1 =(10000, 5) and p2 =(6, 4) be two possible (off-

set, length) pairs, and suppose there are only three encoding rules: the first rule al-

locates 4 bits for offset and 2 bits for length, the second rule allocates 10 bits for 

offset and 3 bits for length, the third rule allocates 17 bits for offset and 4 bits 

for length. The pointer p1 can only be encoded using the third rule thus taking 3 bytes 

and replacing 5 bytes, so the saving is 5−3=2 bytes. The pointer p2 can be replaced 

by the first rule thus taking 1 byte and replacing 4 bytes, so this saves 4−1=3 bytes. 
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In this case using a shorter match is better than using a longer one.

Let p = (offset, length) be the pointer to some previous occurrence of 

the current string, let R be the shortest encoding rule that can handle p, and let ∣R∣ be 

the number of bytes that R spans. The saving from the replacement of the current string 

by p is: length−∣R∣ . Given a previous occurrence of the current string, the algorithm 

first finds the shortest encoding rule that can store the pointer to this occurrence and 

then computes the saving using the formula above. As shown in section 3.2.3, the al-

gorithm might have to choose from several previous occurrences. To do so, the al-

gorithm computes the saving for each previous occurrence and then chooses the one of-

fering the best saving. If no replacement offers a positive saving, the algorithm chooses 

not to replace the current string. 

Experiments show that choosing the occurrence offering the best saving instead 

of just using the longest previous occurrence improves the compression ratio by 3% on 

average. The downside of this technique is a larger processing time, since the algorithm 

has to find the shortest encoding rule for each possible replacement.  

3.2.4.3 Fast Encoding Rule Identification

This section describes a trick used to identify an “encoding rule” using a single 

array access operation. As a reminder, the encoding for rule identifier is Unary codes, i.e. 

consists of  0 to 6 non-zero bits followed by a zero bit. A naïve approach would be to 

count the number of non-zero bits, which would mean performing from 1 to 7 bit-format 

operations. The following trick allows avoiding this.

The encoding rules are fixed and known at the initialization time, prior to any file 

to decompress or search. Hence, we can prepare an array of size 28=256 which maps 

a first byte of a pointer to an encoding rule, also at the initialization time. Of course, 

there is a redundancy, since 256 possible values are mapped into 7 encoding rules. For 

example, all bytes whose value belongs to [0, 127] will be mapped to the first “encoding 

rule”. At the time of decompression, the algorithm just reads the first byte of a pointer 

and immediately obtains the corresponding encoding rule. This idea belongs to ([4]), 

which used the idea for faster decompression of Huffman-encoded symbols.
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3.2.5 Bit-Format Implementation of LZSS
This section describes the bit-format method to additionally encode charac-

ters and pointers (steps 7 and 11 of the algorithm). The method uses two binary Huff-

man trees ([8]): the first one is used to encode characters and match lengths, and the 

second one encodes match offsets. This is similar to DEFLATE algorithm ([16]) used in 

'gzip' ([4], [5]). Both trees are written to the output prior to the compressed text it-

self. Section 3.2.5.3 describes how the trees are serialized. 

3.2.5.1 Algorithm Outline

The general algorithm is as follows: 

1. Compute binary Huffman encoding of all characters of the input text to estimate 

an average size of a Huffman-encoded character, using the characters frequencies in the 

input text. This value is used to decide whether to replace the current string by a pointer 

at step 4 of the LZSS algorithm (section 3.2.1). The details of using this value are 

provided in section 3.2.5.4.

2. Run the basic LZSS algorithm, without additional encoding and store its output 

in a list L. 

3. Compute the frequencies of all characters, lengths and offsets.

4. For rare lengths and offsets  compute the frequency of the required num-

ber of bytes to store each value. See section 3.2.5.2 for details.

5. Use the obtained frequencies to compute two binary Huffman trees, the first tree 

for literals and lengths and the second one for offsets.

6. Write the representations of the Huffman trees to the output and then write Huff-

man encoding of the LZSS elements from L into the output.

3.2.5.2 Dealing with Rare Symbols

Huffman encoding of elements that appear only once in the input is counter pro-

ductive: not only they take many bits to encode, but they also increase the size of a Huff-

man tree, which should be also serialized into the output. Usually, such elements take 

more than twice space in their compressed form than in their original form, due to neces-

sity to write the Huffman trees themselves. This may be tolerable for characters since 

there may be no more than 256 different symbols spanning one byte. However, the num-

ber of possible offsets may be very large.
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To deal with such cases, rare lengths and offsets are not inserted into their re-

spective Huffman trees. Let us define the byte-span of a value N to be the number of 

bytes required to store it, which may be computed using the formula: log2N1/8 . 

Now, instead of storing rare lengths and offsets, only their byte-spans are inserted 

into their Huffman trees. In the compressed output they appear as follows: 

Huffman-encoded element's byte-span The original element (length or offset)

So the alphabet for the first Huffman tree consists of (1) all characters that appear in the 

input text, (2) frequent lengths, and (3) byte-spans of rare lengths (usually, it 

will be a single “symbol” denoting one byte). The alphabet for the second Huffman tree 

consists of (1) frequent offsets (2) byte-spans of rare offsets (usually, there 

will be 2-3 such special “symbols” for offsets spanning one, two and three bytes).

For example, assume that 6 different offsets appeared in the output of the basic 

LZSS algorithm: o1=1 (3 times), o2=12 (3 times), and four offsets appeared only once: 

o3=3, o4=4, o5=5, o6=6 . The alphabet for the Huffman tree consists of 3 ele-

ments: 

• 1 with frequency 3

• 12 with frequency 3

• Offset byte-span of 1 byte with frequency 4 (corresponds for offsets 

o3, o4, o5 and o6)

This alphabet will be encoded as follows: 

• Offset 1 as '10'

• Offset 12 as '11'

• Offset byte-span of 1 byte  as '0'

Using this alphabet, the offset 1 will be encoded as '10', while offset 3 will be encoded 

as 000000011 that is, a single bit '0' followed by a single byte (8 bits) representing 

the value of 3.

3.2.5.3 Writing a Huffman Tree

The two binary Huffman trees are written to the output prior to the compressed 

text itself. This section describes how a Huffman tree is serialized. 
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First, the algorithm outputs the structure of the Huffman tree. It uses the fact that 

every internal node in a Huffman tree can have exactly two sons. The algorithm traverses 

the tree in BFS order, from left to right, and for each node outputs a bit telling whether 

the node is an internal node or a leaf. If the node is an internal node, it outputs bit 1, oth-

erwise it outputs bit 0. For example, the output for the tree below is '10100'.

Second, the algorithm outputs the original values that the tree encodes. Each leaf 

encodes one original value. Their order matches the walk on tree's leaves from left to 

right. In general, the values may be of three types: (1) text literals (2) integers such as 

lengths or offsets (3) byte-spans of rare integer values in bytes, as described in the 

previous section. For each value the algorithm first outputs its type id:'00' for text lit-

erals, '1' for lengths or offsets, '01' for byte-spans. (The tree of offsets has only 

two types of values: offsets and their byte-spans, so a single bit would be sufficient 

to encode a type id of a byte-span. For simplicity, it was not done, since there can be 

at most 4 different byte-spans, for 1, 2, 3 and 4 bytes respectively). Then it outputs 

the actual value. Text literals and byte-spans always require one byte, so it just writes the 

byte.  Arbitrary integers such as lengths or offsets may span more than one byte. For 

such an integer, the algorithm first outputs 2 bits telling the number of bytes the value 

can span (1, 2, 3, or 4 bytes) and then writes the actual value.

3.2.5.4 Assessing Possible Replacements of the Current String

The final encoding of text literals and (off, len) pairs is not known at the 

time of running the basic LZSS algorithm, since their final encoding is based on their fre-

quencies. Suppose, for example, that the algorithm has found that a string T=“abcde” 

could be replaced by a pointer P=(60, 5). The algorithm has now to decide whether 

to replace the string T by the pointer P. As a reminder, all literals and pointers will be 

Huffman-encoded after the basic LZSS algorithm completes. It might happen that the 

Huffman-encoding of T would span e.g. 40 bits, while the Huffman-encoding of P would 

span only 12 bits, in which case it is worth to replace T by P. But it could also happen 

that the Huffman-encoding of T would span 15 bits, while the Huffman-encoding of P 
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would span 25 bits, in which case it is not worth to replace T by P. Hence, the algorithm 

needs to use heuristics to estimate the final length of a string or a pointer. It then uses 

this estimation to choose the best replacement and to decide whether to use a replace-

ment at all. The heuristics used to estimate the final length of a string or a pointer is as 

follows.

Let C be the average size of a Huffman-encoded character, computed at step 1 of 

the bit-format algorithm (see section 3.2.5.1). A final length of a string of len literals is 

estimated to be len∗C bits. (Of course, we could achieve a better estimate by just en-

coding the string with the Huffman tree computed at step 1, but this would require much 

more processing time). Suppose now that this string may be replaced by (off, len) 

pointer. The final length of 'off' value is estimated to be 27∗byte spanof ' off ' 

bits. The reason to use the multiplier 7 instead of 8 stems from the assumption that the 

Huffman-encoded offsets will on average span slightly less than without any encoding, 

and the summand 2 is added to make the algorithm a bit more reluctant to use replace-

ments over the original literals. The final length of 'len' is estimated to be

2C∗byte spanof ' len'  . The reason of using C as a multiplier is that 'len' will 

be encoded with the same Huffman tree as the literals. The reason of using the byte-span 

of 'len' as a multiplier is that the original value of 'len' will have to be written once 

in the serialization of its Huffman tree. Again, the summand 2 is added to make the al-

gorithm a bit more reluctant to use replacements.

Once the final length of a string to be replaced and the final length of an (off, 

len) pair are estimated, it is easy to compare two (off, len) pointers and to de-

cide whether to use a pointer at all. A pointer offering larger savings in bits is preferred 

on a pointer offering  smaller savings. The original string can be replaced by a pointer if 

the savings offered by this pointer is positive, i.e. is estimated to span less bits than the 

original string.

3.3 Shapira/Klein's Compression Implementation
This section describes the implementation details of Shapira/Klein's compression 

algorithm. As described in section 2.6, a text is encoded as a sequence of elements which 

are either text literals or pointers of the kind (offset, length, slide)  to the 

previously occurred strings. The encoding is similar to LZSS, but differs from it by the 



(28)

fact that a pointer is written just after the string it refers to instead of being written at the 

position of the string it replaces. The implementation uses the basic LZSS algorithm ([3]) 

as a subroutine. The additional encoding used for literals and pointers is similar to the 

byte-format implementation of LZSS. That is, literals are written as is, and (offset, 

length, slide) pointers are encoded using a number of predefined “encoding 

rules”. Each encoded pointer takes an integer number of bytes. The details will be de-

scribed in section 3.3.2. Similar to the byte-format implementation of LZSS, each 8 ele-

ments are prefixed with a special byte telling whether the corresponding element is a lit-

eral or a pointer.

3.3.1 Outline of Shapira/Klein's Compression Algorithm
1. Run the basic LZSS algorithm, without additional encoding, and store its output 

in a special data structure L, used to convert LZSS pointers to Shapira/Klein pointers. 

Converting LZSS pointers to Shapira/Klein pointers is described in section 3.3.3. Criteria 

used to choose a particular pointer in steps 3 and 4 of the basic LZSS algorithm are ex-

plained in section 3.3.4.

2. Obtain a list of literals and Shapira/Klein pointers from L.

3. Write each element to the output, encoding each pointer using the shortest 

matching “encoding rule” (see section 3.3.2 for details).

3.3.2 Bit Allocation for (offset, length, slide) Pointers
The encoding is similar to the encoding of (offset, length) pointers used 

in the byte-format LZSS compression, described in details in section 3.2.4.1. That is, 

(offset, length, slide) pointers are encoded using a number of predefined 

“encoding rules”. Each rule specifies the exact amount of bits allocated for offset, the 

exact amount of bits allocated for length, and the exact amount of bits allocated for 

slide. Each rule is prefixed with a rule identifier, telling which specific rule is used. 

The total number of bits, used for the rule identifier, offset, length and slide al-

ways sums to a multiple of 8, thus forming an integer number of bytes. Given a specific 

pointer, the algorithm looks for the shortest matching rule that could  handle it.

The number of rules is 16. The number of bits allocated to the rule identifier is 

constant and equals to 4. This is in contrast to the byte-format LZSS where a rule identi-

fier spans a different number of bits using the unary encoding for a rule identifier. The 
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reason to use a fixed number of bits for a rule identifier is that the unary coding becomes 

much less attractive with the increasing of the number of rules from 7 to 16. Also, with 

the addition of the third parameter, slide, there going to be very few pointers which 

can be encoded to a single byte (the main reason behind using the unary encoding in the 

byte-format LZSS was to maximize the usage of rules spanning one and two bytes). Yet 

it introduces some inconsistency between the implementations. Experiments show that 

the unary encoding for the byte-format LZSS identifiers improves the compression ratio 

by 2-3% on average over the use of identifiers with a fixed number of bits. 

There are several rules encoding a pointer to the same number of bytes, but alloc-

ating a different number of bits to an offset,a length  and a slide. For instance, 

one rule may allocate 13 bits for an offset, 3 bits for a length, and only 4 bits for a 

slide (i.e. the rule spans 24 bits; the remaining 4 bits are used for the rule identifier), to 

be able to handle pointers with large offsets, but with small or zero slides. Anoth-

er rule allocates 8 bits both for an offset and a slide, and 4 bits for a length 

(again, 4 bits are used as an identifier to sum up to 24 bits). A slide cannot be larger 

than an offset, so the number of bits allocated to an offset is at least as the number 

of bits allocated to a slide.

3.3.3 Converting Shapira/Klein Pointers from Regular LZSS Pointers
In Shapira/Klein compression, pointers are inserted just after a string they refer 

to. The number of pointers that will be inserted after a given string is not known in ad-

vance. Therefore, the Shapira/Klein's compression algorithm first stores all literals and 

LZSS pointers in a special structure L (step 1) and only then traverses L and computes 

the list of literals and Shapira/Klein pointers (step 2).

3.3.3.1 Storing Literals and LZSS Pointers 

At the first step, the algorithm just moves LZSS pointers to the new positions, 

that is, just after the strings they refer to: pointer's new position =

LZSS pointer position−LZSS offset length−1 . The literals stay in their original 

positions. The structure L stores a map from every new position to the list of LZSS ele-

ments (literals and pointers) located at this position. The offset is computed by the for-

mula: new offset=LZSS offset −length .
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For example, let T= a1 b2 c3d 4 e5 a6b7 c8 d 9 d 10 e11 a12k 13 . LZSS encoding of this 

string is abcde 5,46,3 k . L will contain the following map:

• 1 → a

• 2 → b

• 3 → c

• 4 → d, (1,4)

• 5 → e

• 6 → (3, 3)

• 13 → k

Similar to the LZSS implementations, the length  cannot be smaller than a 

user-specified parameter, 3 by default.

To avoid dealing with negative values of Shapira/Klein offsets, if LZSS 

pointer's length  exceeds LZSS pointer's offset, the length  is reduced to the 

value of the offset. For example, let T= a1 a2 a3 a4 a5 a6 a7 a8a9 a10a11 a12 and let the 

minimal allowed length to be 3 bytes. The optimal LZSS encoding of this string 

would be a 1,11 . But since the length value cannot exceed the offset value, 

the actual LZSS encoding will be aaa 3,36,6 .

3.3.3.2 Computing a New List of Literals and Pointers

At the second step, the algorithm computes the actual sequence of Shapira/Klein 

elements. First, if all elements of a list are pointers, without a literal, they are moved to a 

closest preceding position that corresponds to a literal, and a slide is inserted to each 

such pointer. The slide is computed by a formula: 

slide= pointer position before move − pointer position after move .

In the example above (with T= a1b2 c3 d 4e5a6 b7 c8 d 9 d 10 e11a12 k13 ), position 4 

maps to a list containing a literal 'd' and a pointer (1, 4), so it will not be changed. 

But position 6 maps to a list consisting of a single pointer (3,3). Since this list con-

tains no literals, (3, 3) should be appended to a list mapped by 5. The position of 

pointer (3,3) in L before the move was 6, its new position became 5, so the slide 

= 6 – 5 = 1. After all moves, L contains the following map:

• 1 → a
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• 2 → b

• 3 → c

• 4 → d, (1,4)

• 5 → e, (3, 3, 1)

• 13 → k

Second, the map is traversed from the smallest position to the largest, and all ele-

ments mapped by those positions are inserted to the output list. 

In the example above, the output list is: { a ,b , c , d , 1,4 , e ,3, 3,1 , k } .

3.3.4 Assessing Possible Replacement of the Current String
The actual (offset, length, slide) triples are not known at the time of 

the run of the basic LZSS algorithm. Therefore, precise evaluation of savings in space 

offered by a particular pointer is not possible. 

The algorithm compares two encodings of the matches and prefers longer 

matches over shorter ones. For matches with the same length, it prefers the ones with 

smaller offsets. 

If the match length is equal or larger than the minimum length then the 

match will be accepted, i.e. the algorithm will choose to replace an original string by a 

pointer. Otherwise, the original string will be kept. In our implementation the minimum 

length is 3. This number is computed from the predefined encoding rules: the smallest 

number of bytes that a triple (offset, length, slide) can span is 2, so a re-

placement has a chance to save space only if the length of the replaced string is greater 

than 2, i.e. if it is 3.

3.4 Shapira/Klein's Pattern Matching Implementation
This section provides implementation details of Shapira/Klein's pattern matching 

algorithm, described in section 2.7. 

The algorithm traverses the text from left to right. To be able to perform partial 

decompression, the processed text is stored in a special circular buffer, CB. 

Note that we treat regular (offset, length) pointers just as (offset, 

length, slide) pointers with slide=0.
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3.4.1 Dealing With Literals
Characters are copied to CB and are also fed into a standard underlying pattern 

matching algorithm, which is the KMP pattern matching algorithm ([6]) in our case. 

Blocks of relevant characters (i.e. successive characters present in the searched pattern) 

are additionally linked. That is, the last character of a block points on the first character 

of the following block. To link to the next block, a character just stores a distance to the 

next block. The circular buffer also stores the position of the last processed 

literal.

For example, let the searched pattern be S=”dkAB” and the compressed text C=

d 1 a2b3 c4d 5d 6 e7 f 8 k9... (C would of course contain pointers, but let us assume that 

they appear after these literals, so they are not shown here for brevity). The blocks of the 

relevant characters are first “d”, then “dd” and then “k”. After reading these charac-

ters, CB will contain the following: d4$ $$d d3$$ k . Here '$' has been used to 

denote an irrelevant character. (Note that CB is implemented using an array, so even 

though there is a linked list of blocks of relevant characters, there are array entries 

between these blocks. Those entries have been denoted by '$'). Superscript '+4' of 

d1 designates a pointer to the next relevant character (which is d5) and means that the 

distance from d1 to the next relevant character is 4. The position of the last pro-

cessed literal is 9. We use  to denote the last processed literal, which is the 

'k' in the last example.

3.4.2 Dealing With (offset, length slide) Pointers
Since each (offset, length, slide) pointer appears immediately after 

the string it refers to, the algorithm can use the linked list of relevant blocks prepared 

when copying the literals. That is, it copies only the relevant characters and strives to 

skip the irrelevant ones. No character is fed into the underlying pattern matching al-

gorithm (KMP) at this stage. The position of the last processed literal is also 

not changed.

Let us continue with the previous example. Suppose that the next element of C is 

a pointer (1, 6, 1), so that C= d 1 a2b3 c4d 5d 6 e7 f 8 k91,6,1 ... . The triple (1, 

6, 1) means that the algorithm should copy 6 characters with the total offset 1+1=2 

from the current position, i.e. after position 10. After reading the text, CB will contain 
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the following: d 1
4$2 $3 $4 d 5 d 6

3$7 $8
k 9@10@11$12 d 13d 14

3 @15@16 k17 . Here '@'  has 

been used to designate an uninitialized buffer entry. 

Let us explain the difference between '@' and '$'.  The entry '@' means that 

so far the algorithm spent no time on this entry. Of course, this entry might become ini-

tialized at the next step of the algorithm. In contrast, as'$' stands for an updated buffer 

entry holding an irrelevant character, the algorithm spent some time updating this entry 

(in our implementation, by copying the character). Once updated, this entry will “never” 

be changed (it may only be change in a completely different context after the capacity of 

the circular buffer is exhausted). For instance, the algorithm could skip positions 15 and 

16 altogether by using the link from one block of relevant characters to the next one. In 

contrast, it had to update position 12 with an irrelevant character. 

3.4.3 Finding the Destination Position for a Literal
Things get more complicated when literals and pointers are intermixed. Charac-

ters cannot be just copied to the next position in the buffer, since this position might be 

used by a character copied as instructed by some previous (offset, length, 

slide) pointer. To find the actual position in which the literal should be copied to, the 

algorithm looks for the first buffer entry, not occupied by a character that was copied as 

instructed by some (offset, length, slide) pointer. This is the first uninitial-

ized entry in the buffer, which does not lie between two   interlinked   blocks of relevant   

characters. 

To find such an entry, the algorithm looks at the entry just next to the entry of the 

last processed literal. Let E be this entry and let i be the index of E in the 

circular buffer CB.  If E is not updated, the search is done. Otherwise, the algorithm in-

spects whether E has a pointer to another block of relevant characters. If such a pointer 

does not exist, the algorithm just moves one step forward and inspects the next entry, at 

CB[i+1]. But if such pointer exists, the algorithm follows the pointer and inspects the 

entry just next to the one pointed by E. This process is repeated until the algorithm en-

counters an initialized entry. At every move, the algorithm updates the underlying KMP 

algorithm: it feeds the encountered relevant characters into the KMP algorithm or in-

structs the KMP to skip a specified number of characters when it moves from one block 

to the other. Skipping the specified number of characters in the KMP algorithm in O(1) 
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time is described in section 3.4.5. The next section provides a formal description of this 

algorithm.

3.4.3.1 Finding the Destination Position for a Literal: the Find_Next_Position 
Algorithm

Algorithm Find_Next_Position

Input: 

• Circular Buffer, CB

• The index in CB of the last processed literal, j

• The KMP algorithm, willing to receive characters or skip them

Output:

• The entry in CB to which the next literal should be written

Algorithm:

1. i ← j + 1

2. while CB[i] is updated {

3. E ← CB[i]

4. Feed KMP with E's character

5. Update the list of the found matches if needed

6. if E has a pointer to the next block of relevant characters, E.next {

7. Instruct KMP to skip (E.next - i – 1) characters 

8. Feed KMP with the character at CB[E.next]

9. i ← E.next + 1

10. } else {

11. i ← i + 1

12. }

13. }

14. return CB[i]

3.4.3.2 Finding the Destination Position for a Literal: the Performance of the 
Find_Next_Position Algorithm

Let U be the number of update operations performed by the Shapira/Klein search al-

gorithm on the circular buffer CB. The “Find_Next_Position” algorithm always 

moves forward, using the updated entries, and stops immediately when it encounters an 
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uninitialized entry. Hence the sum contribution of all invocations of the 

“Find_Next_Position” is bounded by U.

3.4.3.3 Finding the Destination Position for a Literal: Example

Let us continue with the example that we dealt with in section 3.4.2. Let us add 

two more literal elements to the compressed text: 

d 1 a2b3 c4d 5d 6 e7 f 8
k91,6,1A B C . As shown in the previous section, after pro-

cessing the (1,6,1) pointer, CB becomes 

d 1
 4$2 $3 $4d5d 6

3$7 $8
k9 @10@11$12 d13 d 14

3 @15@16 k17@18@19@20 ... . 

The next element of the compressed text is a literal 'A'. The position of 

the last processed literal is 9. The first uninitialized buffer entry that does 

not lie between the interlinked blocks of relevant characters is at position 10. (Position 

10 does not lie between interlinked blocks, since k9 has no next pointer, so that 

k9  and d 13 d14
3 are not interlinked). The algorithm copies 'A' to position 10 of 

CB and feeds 'A' into the KMP algorithm. CB becomes 

d 1
4$2 $3 $4 d 5 d 6

3$7 $8 k 9
A10@11$12d 13 d 14

3 @15 @16 k 17@18@19@20 ... . 

Similarly, 'B' is copied into position 11 of CB and feeds 'B' into the KMP algorithm, 

so CB becomes d 1
4$2 $3 $4 d 5 d 6

3$7 $8 k 9 A10
B11 $12 d 13 d 14

3@15@16 k17 @18@19@20 ... .

Now the next element of the compressed text is a literal 'C', and the posi-

tion of the last literal is 11. The algorithm examines '$12', 'd13' and 

'd14' and feeds them to the KMP algorithm. Then it moves to 'k17', skipping 2 char-

acters, and instructs the KMP algorithm to skip 2 characters. Then 'k17' is examined 

and fed to the KMP algorithm and then the needed uninitialized buffer entry is found at 

position 18. The algorithm copies 'C' to this position and feeds it to the KMP al-

gorithm. The buffer becomes 

d 1
4$2 $3 $4 d 5 d 6

3$7 $8 k 9 A10 B11$12d 13 d 14
3@15@16 k 17

C18 @19 @20 ... .

3.4.4 Detecting Uninitialized Buffer Entries
The algorithm needs to detect whether a buffer entry is initialized or not. Simply 

using NULL values will not work, since this is a circular buffer, so a non-NULL entry 

may still be uninitialized. The algorithm uses another method.
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Let K be the capacity of a circular buffer. A circular buffer has an interface of a 

regular buffer with infinite capacity. That is, as the algorithm runs forward, the external 

indexes grow, while internally they are mapped to indexes within [0, K) using the for-

mula: internal index=external indexmod K . 

When a character is copied into a buffer entry, the external index is also stored in 

this entry. The entry at external index i is initialized if and only if its stored external in-

dex is equal to i.

3.4.5 Using KMP Algorithm to Skip Irrelevant Characters
Usually the KMP algorithm ([6]) is described as being able to read that characters 

that it wishes to process (e.g. running in a loop on the input text). However, it can be 

modified to respond to an event of reading a new character. The search object stores the 

search pattern, the prefix function, the variable t holding the current position in the text, 

and the last value, q,  returned by the prefix function. On receiving a character, this 

search object executes a single step of the search, i.e. performs exactly the same opera-

tions that are performed by a regular KMP algorithm inside a loop on the text characters.

To skip s characters, s>0,  t is incremented by s and q is assigned to -1. This 

has exactly the same effect as if a single irrelevant character (the one not present in the 

search pattern) has been encountered in the text except that the current position in text is 

incremented by s and not by 1.

3.4.6 Bounding the Capacity of the Circular Buffer
Let us find some upper bound on the required capacity, K, of the circular buffer, CB, 

used in Shapira/Klein's pattern matching algorithms.

Processing any pointer (offset, length, slide) requires no more than 

offset2∗lengthslide space (the length is doubled since both the source and the 

destination should be present in the buffer in order to copy the characters). In other 

words, K≤max offset 2∗max lengthmax slide .

Let W be the maximum text window size.  Then the following holds:

 max offset≤W , max slide≤W ,max lengthmax offset /2=W /2 .

The maximum length is usually much smaller than the maximum offset, hence we could 

safely assume that max length < max offset / 2.

Hence, K≤W2∗W /2W=3∗W .
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3.4.7 The Algorithm Outline
Input: 

• Shapira/Klein compressed text, T

• Searched pattern, S

• Maximum text window size, W

Output:

• The positions of  all matches of S in T

Algorithm:

1. Compute a relevancy array. For each byte it tells whether the character is present in S 

or not.

2. Create a circular buffer CB with capacity 3*W

3. last_char_index ← 0

4. For each element e of T  {

5. If e is a character {

6. E ← Find_Next_Position (see section 3.4.3)

7. last_char_index ← the index of E

8. Copy e into CB[last_char_index]

9. Feed e into the KMP algorithm

10. Update the list of the found matches if needed

11. Update the linked list of relevant characters blocks if needed

12. } else (e is a pointer of kind (offset, length, slide)) {

13. Copy the relevant characters and skip the irrelevant ones

14. }

15. }

16. Feed CB's characters into the KMP algorithm,

 until the first uninitialized entry of CB, 

 updating the list of the found matches if needed

4 Experimental Results
This section shows experimental results for each technique and compares the 

compression performance and the compression and pattern matching processing time. 
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The tests were run on the standard benchmarking data set, which is “The Canterbury 

Corpus” ([17]), and “The Large Calgary Corpus” ([18]). The tests have been run on 32-

bit Windows 7 machine with “Intel(R) Core(TM)2 Quad CPU Q8200” pro-

cessor and 3GB RAM memory. The program has been implemented in Java. All runs 

were performed with “-Xms64m -Xmx1500m” java parameters. It is especially re-

quired for large files, since for simplicity a whole file is read into a memory before the 

compression. The compressed text is also accumulated in a memory before storing it on 

the disk. The search time specifies the time of a search in the in-memory text and does 

not include the load time of a file into a memory.

4.1 Pattern Matching: Methods Comparison
This section compares the search times achieved by different methods. The com-

pared techniques are: 

• “Decompress and Search” in byte-format LZSS-compressed file (described in 

sections 2.3 and 2.4)

• “Search During Decompress” in byte-format LZSS-compressed file (described in 

sections 2.5 and 3.2.4)

• Manber's compressed matching (described in section 2.2)

• Shapira/Klein's pattern matching in byte-format Shapira/Klein-compressed file 

(described in sections 2.7 and 3.4)

For our experiments we repeated the pattern matching algorithm 100 times and averaged 

the results. Each experiment searched for a substring taken randomly from the original 

file. The length of a searched pattern randomly varies from 4 to 10 characters. The time 

is given in seconds, and the best results are shown in a bold font, the worst results are 

underlined. In the first table the search is performed until all matches are found. In the 

second table the search is performed until the first match is found.  

Search for all matches:

File File Size 
(bytes)

“Decompress 
& Search”

“Search 
During 

Decompress”

Manber Shapira/Klein

Canterbury
Corpus
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alice29.txt 152089 1.436s 0.877s 0.406s 9.213s

asyoulik.txt 125179 1.210s 0.751s 0.296s 8.124s

cp.html 24603 0.220s 0.121s 0.63s 1.372s

fields.c 11150 0.105s 0.61s 0.30s 0.491s

grammar.lsp 3721 0.33s 0.21s 0.10s 0.156s

kennedy.xls 1029744 9.100s 5.6s 4.602s 45.683s

lcet10.txt 426754 3.961s 2.434s 1.28s 22.451s

plrabn12.txt 481861 4.796s 3.10s 1.104s 25.941s

ptt5 513216 7.924s 6.33s 18.890s 31.701s

sum 38240 0.353s 0.205s 0.138s 2.512s

xargs.1 4227 0.43s 0.25s 0.11s 0.195s

Large
Canterbury

Corpus
bible.txt 4047392 36.294s 21.62s 9.51s 156.146s

E.coli 4638690 47.131s 29.599s 12.802s 191.221s

world192.txt 2473400 21.194s 12.255s 6.28s 93.321s

Large
Calgary
Corpus

bib 111261 0.969s 0.567s 0.265s 7.312s

book1 768771 7.425s 4.703s 1.766s 40.367s

book2 610856 5.528s 3.313s 1.474s 28.652s

geo 102400 1.70s 0.713s 0.363s 7.532s

news 377109 3.386s 2.77s 0.971s 19.151s

obj1 21504 0.194s 0.118s 0.85s 1.479s

obj2 246814 2.252s 1.236s 0.859s 12.709s

paper1 53161 0.478s 0.286s 0.130s 3.279s

paper2 82199 0.770s 0.461s 0.193s 5.215s

paper3 46526 0.445s 0.265s 0.110s 2.971s

paper4 13286 0.132s 0.79s 0.32s 0.676s

paper5 11954 0.116s 0.77s 0.30s 0.595s

paper6 38105 0.348s 0.198s 0.93s 2.330s

pic 513216 7.600s 5.519s 17.215s 30.75s

progc 39611 0.357s 0.209s 0.101s 2.430s
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progl 71646 0.597s 0.314s 0.184s 3.962s

progp 49379 0.404s 0.218s 0.132s 2.722s

trans 93695 0.758s 0.387s 0.238s 4.868s

Search for the first match:

File File Size 
(bytes)

“Decompress 
& Search”

“Search 
During 

Decompress”

Manber Shapira/Klein

Canterbury
Corpus

alice29.txt 152089 0.985s 0.219s 0.100s 2.643s

asyoulik.txt 125179 0.865s 0.214s 0.80s 2.506s

cp.html 24603 0.153s 0.49s 0.21s 0.439s

fields.c 11150 0.73s 0.24s 0.11s 0.186s

grammar.lsp 3721 0.26s 0.10s 0.5s 0.65s

kennedy.xls 1029744 5.439s 0.895s 0.719s 8.823s

lcet10.txt 426754 2.672s 0.537s 0.232s 5.739s

plrabn12.txt 481861 3.242s 0.625s 0.230s 6.168s

ptt5 513216 2.7s 0.127s 0.106s 1.698s

sum 38240 0.261s 0.97s 0.56s 1.91s

xargs.1 4227 0.32s 0.17s 0.5s 0.89s

Large
Canterbury

Corpus
bible.txt 4047392 22.763s 2.397s 1.69s 19.830s

E.coli 4638690 27.943s 0.372s 0.153s 3.44s

world192.txt 2473400 13.291s 1.544s 0.748s 12.655s

Large
Calgary
Corpus

bib 111261 0.669s 0.133s 0.59s 1.674s

book1 768771 5.106s 0.880s 0.343s 8.362s

book2 610856 3.802s 0.762s 0.340s 7.725s

geo 102400 0.870s 0.379s 0.190s 4.74s
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news 377109 2.391s 0.548s 0.253s 5.692s

obj1 21504 0.147s 0.54s 0.30s 0.572s

obj2 246814 1.582s 0.467s 0.316s 5.366s

paper1 53161 0.368s 0.128s 0.53s 1.568s

paper2 82199 0.562s 0.176s 0.70s 2.153s

paper3 46526 0.330s 0.104s 0.41s 1.283s

paper4 13286 0.99s 0.42s 0.14s 0.332s

paper5 11954 0.97s 0.43s 0.14s 0.310s

paper6 38105 0.261s 0.88s 0.37s 1.56s

pic 513216 2.52s 0.149s 0.133s 2.117s

progc 39611 0.277s 0.96s 0.41s 1.131s

progl 71646 0.433s 0.119s 0.71s 1.515s

progp 49379 0.295s 0.89s 0.44s 0.992s

trans 93695 0.513s 0.147s 0.72s 1.598s

The tables above show that LZSS search-during-decompress outperforms Shapira/Klein's 

pattern matching in the vast majority of the test cases. Manber's pattern matching usually 

outperforms the LZSS search-during-decompress, especially in larger files, but it is less 

stable, since it may first search for a shorter pattern which might produce false matches. 

When the search is performed until the first match, Shapira/Klein's pattern matching out-

performs byte-format LZSS-based “Decompress and Search” on large files and is usually 

slower in smaller files. Note that in rare cases of small files byte-format LZSS-based 

“Decompress and Search” outperforms all other techniques because of its simplicity 

(even LZSS search-during-decompress has its overhead of maintaining a circular buffer).

4.2 Shapira/Klein's Pattern Matching: Methods' 
Dependency on the Pattern Length

This section explores the dependency of Shapira/Klein's pattern matching on the 

length of the searched pattern. Again, the search was performed 100 times for each tech-

nique and the searched pattern was randomly selected from the corresponding original 

file. Each column represents the results for a fixed length pattern. The search is per-

formed until the first match is found. The table shows the ratio between the search-dur-

ing-decompress time of byte-format LZSS method and the search time of Shapira/Klein's 
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one. The smaller the ratio the better the LZSS search-during-decompress performs as 

compared to Shapira/Klein's pattern matching.

File File Size
(bytes)

Len=1 Len=2 Len=3 Len=4 Len=15 Len=
100

Canterbury
Corpus

alice29.txt 152089 0.4 0.15 0.08 0.07 0.08 0.08

asyoulik.txt 125179 0.33 0.11 0.07 0.08 0.08 0.08

cp.html 24603 0.6 0.15 0.13 0.11 0.1 0.08

fields.c 11150 0.46 0.44 0.15 0.14 0.12 0.12

grammar.lsp 3721 0.83 0.22 0.14 0.14 0.13 0.13

kennedy.xls 1029744 0.57 0.1 0.1 0.1 0.1 0.1

lcet10.txt 426754 0.23 0.11 0.08 0.08 0.09 0.09

plrabn12.txt 481861 0.67 0.24 0.1 0.09 0.11 0.1

ptt5 513216 0.04 0.08 0.08 0.08 0.08 0.08

sum 38240 0.14 0.07 0.08 0.07 0.07 0.08

xargs.1 4227 0.5 0.17 0.12 0.18 0.12 0.12

Large
Canterbury

Corpus
bible.txt 4047392 0.4 0.18 0.09 0.12 0.12 0.12

E.coli 4638690 0.93 1.25 0.65 0.17 0.14 0.14

world192.txt 2473400 0.9 0.2 0.11 0.1 0.11 0.11

Large
Calgary
Corpus

bib 111261 0.48 0.09 0.08 0.07 0.07 0.07

book1 768771 0.86 0.11 0.07 0.09 0.1 0.11

book2 610856 0.35 0.08 0.08 0.09 0.1 0.1

geo 102400 0.28 0.08 0.08 0.08 0.08 0.08

news 377109 0.17 0.08 0.07 0.08 0.09 0.09

obj1 21504 0.16 0.08 0.08 0.09 0.08 0.09

obj2 246814 0.11 0.07 0.08 0.07 0.08 0.08

paper1 53161 0.21 0.1 0.08 0.08 0.07 0.08

paper2 82199 0.73 0.14 0.08 0.07 0.07 0.07
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paper3 46526 0.53 0.14 0.12 0.08 0.08 0.08

paper4 13286 0.38 0.15 0.16 0.13 0.11 0.12

paper5 11954 0.64 0.13 0.17 0.12 0.13 0.13

paper6 38105 0.17 0.1 0.08 0.08 0.07 0.08

pic 513216 0.03 0.07 0.07 0.07 0.07 0.08

progc 39611 0.24 0.11 0.08 0.08 0.08 0.07

progl 71646 0.63 0.13 0.08 0.08 0.07 0.07

progp 49379 0.6 0.13 0.1 0.1 0.08 0.07

trans 93695 0.1 0.12 0.07 0.07 0.07 0.07

The table shows that the ratio is usually larger for short strings up to 4 charac-

ters, and then remains more or less constant for each file. That is, Shapira/Klein performs 

relatively better for very short strings. This can be explained by the fact that in average 

short patterns leave more characters “irrelevant”. These characters are skipped by Sha-

pira/Klein's pattern matching.

4.3 Compression: Methods Comparison
This section compares the compression ratio and compression times achieved by 

different methods. The compared techniques are: 

• Bit-format implementation of LZSS (described in section 3.2.5)

• Byte-format implementation of LZSS (described in section 3.2.4)

• Shapira/Klein's method (described in sections 2.6 and 3.3)

• Manber's method (described in sections 2.1 and 3.1)

• Gzip: Linux/UNIX utility run with default options

LZSS and Shapira/Klein's compressions use both hash-table and suffix trees to find each 

string's previous occurrences, as described  in section 3.2.3.3. The maximum text win-

dow size is 32000 byte, the maximum bucket size in the hash table that stores the string's 

previous occurrences is 5. Manber's compression uses 100 trials to improve the original 

partition, as recommended by Manber. The full list of parameters with their description 

and the default values is shown in “Appendix B“. All the values used in this run are the 

default ones.

Each entry in the table consists of two parts: the first one presents the compres-

sion ratio in percent, while the second one specifies the compression time, in seconds. 
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The compression time of Gzip utility is not shown. The best results are shown in a bold 

font, the worst results are underlined. If the best compression ratio is achieved by Gzip, 

the next best result is also shown in a bold font.

File File Size BIT LZSS BYTE 
LZSS

Shapira-
Klein

Manber GZIP

Canterbury
Corpus

alice29.txt 152089 39.16%
1.484s

44.83%
1.191s

58.50%
1.333s

66.90%
0.168s

35.79%

asyoulik.txt 125179 42.23%
1.151s

49.12%
0.987s

63.11%
1.62s

65.61%
0.120s

39.10%

cp.html 24603 34.76%
0.133s

42.29%
0.101s

48.09%
0.158s

70.69%
0.155s

32.51%

fields.c 11150 31.80%
0.51s

35.51%
0.30s

42.19%
0.37s

72.22%
0.131s

28.19%

grammar.lsp 3721 36.58%
0.17s

42.27%
0.14s

49.45%
0.12s

76.57%
0.87s

33.49%

kennedy.xls 1029744 13.93%
5.689s

34.02%
4.819s

41.46%
5.738s

100.05%
1.266s

20.08%

lcet10.txt 426754 37.08%
4.63s

42.29%
3.422s

55.44%
3.711s

66.66%
0.252s

33.95%

plrabn12.txt 481861 44.47%
4.961s

51.72%
4.83s

67.16%
4.505s

64.39%
0.221s

40.51%

ptt5 513216 10.48%
3.73s

14.53%
2.877s

29.19%
9.878s

96.04%
0.556s

11.00%

sum 38240 36.41%
0.219s

38.89%
0.179s

47.86%
0.200s

100.67%
1.4s

33.80%

xargs.1 4227 45.78%
0.21s

51.24%
0.8s

60.73%
0.16s

74.54%
0.80s

41.54%

Large
Canterbury

Corpus
bible.txt 4047392 32.03%

42.71s
37.00%
27.660s

49.80%
35.4s

64.93%
0.986s

29.43%

E.coli 4638690 27.16%
54.146s

36.43%
38.200s

65.74%
40.89s

74.01%
0.865s

28.91%

world192.txt 2473400 32.10%
18.197s

37.49%
18.216s

46.86%
19.820s

67.88%
0.713s

29.30%
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Large
Calgary
Corpus

bib 111261 34.87%
1.13s

40.70%
0.844s

49.98%
0.960s

63.47%
0.184s

31.51%

book1 768771 45.09%
8.335s

51.83%
6.724s

66.70%
7.888s

65.32%
0.310s

40.76%

book2 610856 37.26%
5.450s

42.18%
5.105s

54.54%
5.439s

67.13%
0.347s

33.84%

geo 102400 68.50%
0.857s

79.44%
0.815s

93.60%
0.986s

100.27%
1.587s

66.89%

news 377109 40.67%
3.639s

47.85%
3.91s

58.06%
3.503s

72.24%
0.338s

38.41%

obj1 21504 52.23%
0.110s

54.76%
0.70s

65.14%
0.119s

101.20%
1.140s

48.01%

obj2 246814 35.96%
2.92s

39.22%
1.820s

46.41%
2.38s

100.11%
1.733s

33.07%

paper1 53161 38.43%
0.418s

42.89%
0.331s

53.85%
0.358s

68.02%
0.180s

34.94%

paper2 82199 39.48%
0.665s

44.70%
0.625s

57.96%
0.695s

66.39%
0.173s

36.20%

paper3 46526 42.36%
0.417s

48.07%
0.299s

60.66%
0.328s

66.71%
0.144s

38.90%

paper4 13286 45.42%
0.68s

51.45%
0.50s

62.78%
0.112s

69.83%
0.115s

41.67%

paper5 11954 45.96%
0.56s

51.05%
0.44s

61.91%
0.49s

70.17%
0.152s

41.79%

paper6 38105 38.46%
0.262s

42.52%
0.223s

53.34%
0.232s

68.36%
0.171s

34.73%

pic 513216 10.48%
3.195s

14.53%
2.839s

29.19%
8.294s

96.05%
0.690s

11.00%

progc 39611 36.85%
0.277s

41.53%
0.217s

51.07%
0.264s

70.74%
0.163s

33.51%

progl 71646 24.69%
0.539s

28.80%
0.461s

36.14%
0.498s

71.15%
0.161s

22.71%

progp 49379 25.09%
0.342s

28.37%
0.276s

34.91%
0.328s

72.00%
0.167s

22.77%

trans 93695 22.61%
0.667s

26.44%
0.582s

32.83%
0.701s

71.40%
0.217s

20.26%
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The table shows that the bit-format LZSS compression ratio is usually within 3-

4% worse than Gzip's. This verifies our implementation of LZSS. Gzip's better com-

pression ratio can be attributed mainly to its more sophisticated way of encoding LZSS 

offsets. (Gzip prefixes each offset with a Huffman-encoded value from 1 to 32 to desig-

nate one of 32 offset size groups, while our implementation just stores the Huffman-

encoded offset's size in bytes). The byte-format LZSS compression ratio is usually 

within 5-7% of the bit-format one. This is roughly the “price” of staying with a byte 

format. Shapira/Klein method's compression ratio is usually within 10-15% of the byte-

format LZSS. This is roughly the “price” of adding the third parameter, slide, to the 

pointer structure. Manber's method achieves the worst compression ratio and is usually 

the fastest. On average, it achieves 30% reduction of the input size, similar to the figures 

reported by Manber.

4.4 Compression: LZSS Text Window Implementations 
Comparison

This section compares the relative performance of several implementations of 

LZSS text windows, i.e. methods to store and find the previous occurrences. The first 

table shows the results for the bit-format LZSS method. The second table shows the res-

ults for the byte-format compression. The string prefix length that serves as a hash key is 

4 characters for the bit-format compression and 3 characters for the byte-format one. 

These numbers yield the best compression ratios. The full list of parameters with their 

description and the default values is shown in “Appendix B“. All the values used in this 

run are the default ones. The compared implementations are:

• “ST+Hash[100]”: Suffix Trees + Hash Table (described in section 3.2.3.3) 

with hash bucket size=100. It shows the best possible results achievable by the 

given algorithm and the given encoding.

• “ST+Hash[5]”: Suffix Trees + Hash Table (described in section 3.2.3.3) with 

hash bucket size=5

• “ST”: Suffix Trees only (described in section 3.2.3.2)

• “Hash[5]”: Hash Table (described in section 3.2.3.1) with hash bucket size=5

• “Hash[100]”: Hash Table (described in section 3.2.3.1) with hash bucket 

size=100
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Hash bucket size of 5 is chosen as a reasonable default, while hash bucket size of 100 is 

chosen to show the compression ratio limits of a given implementation. 

The tests have been run on the Canterbury Corpus data set ([17]). The first table shows 

both the compression ratio and the compression time for each method. The second table 

only shows the compression ratios. 

The compression times are less relevant in the byte-format LZSS: as explained in 

section 3.2.4.2, the byte-format LZSS compression algorithm chooses from several pre-

vious occurrences of the current string by computing the precise saving from using each 

occurrence. The time overhead of choosing the best previous occurrence from several 

ones is comparable to the time required to find them. In contrast, the bit-format LZSS al-

gorithm uses a fast heuristics to choose  the best previous occurrence from several ones 

(see section 3.2.5.4), and its time is negligible compared to the time of finding them. 

Compression ratio and compression times for the bit-format LZSS method:

File File Size ST + 
Hash[100]

ST +
Hash[5]

ST Hash[5] Hash[100]

Canterbury
Corpus

alice29.txt 152089 38.78%
1.900s

39.16%
1.428s

40.49%
1.108s

40.79%
0.402s

38.82%
0.643s

asyoulik.txt 125179 41.97%
1.425s

42.23%
1.164s

43.56%
0.885s

43.28%
0.378s

41.98%
0.562s

cp.html 24603 34.68%
0.165s

34.76%
0.135s

35.15%
0.98s

36.16%
0.52s

34.69%
0.69s

fields.c 11150 31.78%
0.62s

31.80%
0.76s

33.27%
0.35s

33.52%
0.16s

31.78%
0.29s

grammar.lsp 3721 36.52%
0.21s

36.58%
0.12s

38.08%
0.11s

36.93%
0.5s

36.52%
0.7s

kennedy.xls 1029744 13.77%
7.127s

13.93%
5.664s

16.96%
4.441s

14.23%
1.739s

13.79%
2.859s

lcet10.txt 426754 36.77%
4.964s

37.08%
4.65s

38.52%
3.226s

38.38%
1.170s

36.82%
1.862s

plrabn12.txt 481861 44.12%
5.949s

44.47%
5.49s

45.83%
3.711s

45.78%
1.523s

44.15%
2.562s
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ptt5 513216 10.40%
3.768s

10.48%
3.154s

10.53%
2.726s

11.63%
0.568s

10.62%
1.67s

sum 38240 36.35%
0.282s

36.41%
0.231s

38.06%
0.188s

36.95%
0.70s

36.37%
0.112s

xargs.1 4227 45.75%
0.25s

45.78%
0.22s

46.89%
0.9s

46.11%
0.16s

45.75%
0.7s

bible.txt 4047392 31.69%
54.323s

32.03%
36.518s

33.02%
31.227s

33.77%
8.964s

31.81%
16.908s

E.coli 4638690 27.15%
193.459s

27.16%
55.779s

27.51%
45.121s

27.07%
16.218s

27.16%
154.116s

world192.txt 2473400 31.79%
24.713s

32.10%
21.93s

33.79%
12.842s

33.02%
5.50s

31.82%
7.246s

The table shows that “Hash[5]” achieves compression ratio which is usually with-

in 1-1.5% of the “best possible“  results achieved by “ST+Hash[100]”. The compression 

ratio of  “ST+Hash[5]” is very close to that of “ST+Hash[100]”. The compression ratio 

of “ST” is usually comparable with that of “Hash[5]”, but is much slower. In many cases 

it is even slower than “Hash[100]”! 

Compression ratios for the byte-format LZSS method:

File File Size ST + 
Hash[100]

ST +
Hash[5]

ST Hash[5] Hash[100]

Canterbury
Corpus

alice29.txt 152089 44.00% 44.83% 50.18% 48.20% 44.10%

asyoulik.txt 125179 48.44% 49.12% 55.25% 52.01% 48.51%

cp.html 24603 42.35% 42.29% 44.80% 44.06% 42.38%

fields.c 11150 35.35% 35.51% 37.70% 37.35% 35.39%

grammar.lsp 3721 42.30% 42.27% 43.54% 42.76% 42.30%

kennedy.xls 1029744 33.85% 34.02% 34.22% 34.68% 33.95%

lcet10.txt 426754 41.56% 42.29% 47.53% 45.60% 41.65%

plrabn12.txt 481861 50.79% 51.72% 58.31% 54.76% 50.89%

ptt5 513216 14.49% 14.53% 15.30% 15.81% 15.13%

sum 38240 38.89% 38.89% 42.82% 40.18% 39.04%

xargs.1 4227 51.12% 51.24% 52.97% 51.90% 51.12%

bible.txt 4047392 36.24% 37.00% 41.39% 40.74% 36.47%
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E.coli 4638690 34.41% 36.43% 41.44% 40.14% 34.89%

world192.txt 2473400 36.78% 37.49% 42.09% 40.31% 36.84%

The table shows that a combination of suffix trees and hash tables “ST+Hash[5]” 

improves the compression ratio by 2-3% in average. On the other hand, the compression 

ratio of “ST” is slightly worse than that of “Hash[5]”. That is, for the byte-format LZSS 

method, hash tables outperform the suffix trees both in compression ratios and in com-

pression times. As has been already mentioned, the naïve usage of suffix trees in the 

LZSS algorithm finds the oldest matches, yielding longer pointers.

5 Analysis
5.1 Performance of Shapira/Klein's Method

It has been shown in section 4 that Shapira/Klein's pattern matching method is ac-

tually slower than a search-during-decompress in LZSS-compressed text. There are sev-

eral reasons behind it.

First, Shapira/Klein's compressed matcher can perform faster than LZSS com-

pressed matcher only due to skipped characters. That is, irrelevant characters referenced 

by a pointer are (1) not copied to the circular buffer (2) KMP algorithm ([6]) can be in-

structed to skip several irrelevant characters at once. In practice this saving is overshad-

owed by the time required to implement a more complex logic of the pattern matching 

algorithm, which includes preserving linked list of relevant character blocks, finding the 

actual place for the next literal etc. In addition, the number of skipped characters de-

creases in average when increasing the length of a searched pattern.

It should be noted that most probably the replacement of LZSS pointers is not the 

bottleneck in compressed search within e.g. gzip-compressed text. After all, it only re-

quires bytes copy from one position in an array to another which is a relatively fast oper-

ation. Most probably, the additional compression of LZSS pointers and literals (e.g. 

Huffman encoding in case of DEFLATE) slows the decompression process much great-

er. Shapira/Klein's method mainly attempts to optimize the first part (i.e. replacement of 

LZSS pointers), offering nothing to optimize the second part (decompression of addi-

tionally compressed LZSS pointers and literals). Changing the way that the LZSS ele-
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ments are additionally encoded can yield a compression ratio better than Manber's and a 

search time better than that in a bit-format LZSS compressed text. That is, it can serve as 

a compromise between the two techniques.

5.2 Compression of LZSS Pointers and Literals
It should be noted that the “byte-format” LZSS-compression scheme used in this 

work is very far from perfect. After all, designing this scheme was not the main purpose 

of this work. This is in contrast to well-thought and mature bit-format techniques such as 

binary Huffman or arithmetic coding. Despite the relatively primitive technique employed 

in the “byte-format” LZSS compression, the compression ratio it achieves is within 8-

12% of the one achieved by 'gzip', and is usually much better than Manber's. It is 

reasonable to assume that smarter byte-format techniques would achieve better compres-

sion ratio while still providing the same or better compressed matching speed. 

The “encoding rule” technique can be improved in a variety of ways: dynamically 

deduce the encoding rules, drop the restriction on characters and pointers to span an in-

teger number of bytes (some internal statistics suggest that the most frequent pointers 

would span 10-14 bits) - it still can require only a constant number of fast operations to 

decompress an element, and others. Still, “mimicking” the well-thought DEFLATE al-

gorithm ([16]) and replacing the binary Huffman encoding ([8]) or the Arithmetic Coding 

(10) by some compromise would most probably achieve better results. 

Example: DEFLATE uses a binary Huffman tree to encode literals and lengths. 

The encoding algorithm can replace the original Huffman tree by the one in which no 

Huffman-encoded symbol spans more than N bits, where N may be for example 10. Sym-

bols whose original Huffman encoding spans more than N bits will be replaced by a 

single special symbol in the second Huffman tree. Such symbols will be written as is to 

the output, prefixed with the Huffman encoding of the special symbol. For offsets, DE-

FLATE uses 32 possible symbols, Huffman encoded, to encode the number of bits the 

corresponding offset can span. Again, the encoding algorithm will replace the original 

Huffman tree by the one in which no Huffman-encoded symbol spans more than N bits. 

It could be done by artificially increasing the frequency of elements whose original Huff-

man encoding spans more than N bits. The advantage of bounding the Huffman-encoding 

by N bits is that decoding of every element (either character, length or offset prefix) 
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would now always take a constant number of simple operations, using a prebuilt array of 

size 2N (This technique appears in ([4]) and is also described in section 3.2.4.3 of this 

paper). Of course, this would decrease the compression ratio, but improve the decom-

pression and search-during-decompress processing time.

Another possible technique to encode offsets is as follows. Assume that the tech-

nique used to write offsets is similar to that of DEFLATE, i.e. each offset is prefixed 

with a short symbol telling the number of bits that the offset spans. In this context 

“writing a value” means first writing such symbol and then writing the value it-

self. Now, enumerate N most frequent offsets by numbers from 1 to N (0 is reserved as a 

special symbol), thus mapping each such offset to a small number. The map is appended 

to the compressed text. Offset values larger than N and not found in the dictionary are 

written as usual. Offset values smaller than N and not found in the dictionary are prefixed 

with a special symbol 0 (as usual, both values are prefixed with the number of bits they 

span). Frequent offset values (found in the map) are written using this map.

5.3 Performance of Suffix Trees for LZSS
As shown in section 3.2.3.2, suffix trees have been used in implementations of 

LZSS and Shapira/Klein's methods to find the longest previous occurrence of a given 

string. Results presented in section 4 show that suffix trees were 2-3 times slower than 

hash tables, while yielding similar compression ratios as hash tables. Still, their combina-

tion improved the compression ratio by 1-1.5%  in average for the bit-format LZSS 

method and by 2-3%  in average for the byte-format one. It should be noted that the suf-

fix tree may be changed to store more recent matches, in which case the results would be 

different, but this was not implemented.

5.4 Alternative LZSS Search Structures
Results presented in section 4 show that increasing the maximum size of hash 

buckets improves the compression ratio, but also can drastically increase the processing 

time of compression. As the k-length prefix of a string is used to compute a hash key, the 

number of text substrings with the same 3-characters' prefix may be large.

One of possible improvements of the performance of the suffix trees is to change 

it to store more recent matches. If on insertion of a new suffix the algorithm goes down 
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one edge, it means that the new suffix contains the characters of this edge. Therefore, the 

algorithm may update the edge to point to the characters of the suffix, i.e. to a more re-

cent location in the text having the same characters as the edge.  

Another improvement relates to the hash tables performance used in LZSS com-

pression: instead of using a single hash table, use two or three of them simultaneously. 

Each table works with string prefixes of different lengths, e.g. 3, 4, and 6. That is, to find 

or insert a string into the first table, one should compute the hash function of the first 3 

characters of the string. To find or insert a string into the second table, one should com-

pute the hash function of the first 4 characters etc. Each step of the algorithm  inserts the 

current string into the three hash tables. To find the longest match, the algorithm first 

searches in the table based on the longest prefix (6 in our example). If it yields no match, 

the algorithm concludes that there is no match with length greater than or equal to the 

prefix length (6 in our example), and checks in the table based on a shorter prefix etc., 

otherwise it just uses the match. As shown in section 3.2.3.1, the hash functions can be 

computed in constant time, regardless of the prefix size.

Probably the best data structure for LZSS-based compression is a truncated suffix 

tree ([19]), which maintains a suffix-tree of a given depth k only. It allows finding the 

most recent matches among the ones with length up to k characters.

5.5 KMP Is Not the Fastest Pattern Matching 
Algorithm

The experimental results shown in section 4 have a bias against the Manber meth-

ods. The underlying pattern matching algorithm used both in Shapira/Klein's pattern 

matching and in Manber's pattern matching was KMP ([6]). But it is known that in most 

practical applications, Boyer-Moor algorithm ([9] performs faster than KMP. This al-

gorithm could be freely used as the underlying algorithm for the Manber's pattern match-

ing. But it is not clear how it could be used inside LZSS-compressed or Shapira/Klein-

compressed text, since it violates the methods' requirement from the underlying al-

gorithm to process characters from left to right. Still, it should be noted that Manber's 

technique does not allow a search for regular expressions, since it compresses the 

searched pattern, while LZSS and Shapira/Klein's methods can feed the original charac-

ters to any pattern matching algorithm.
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6 Conclusions
The main conclusion of this paper is that Shapira/Klein's method apparently did 

not  achieve its goals. It takes more time to search inside the Shapira/Klein-compressed 

text than in LZSS-compressed text and the search requires the same amount of additional 

memory as search-during-decompress in LZSS. At the same time, LZSS achieves better 

compression ratio than Shapira/Klein's method because of an additional parameter, 

'slide', added by the latter to the pointer structure. 

Second, a compromise between Manber's compression offering fast search times 

and bit-format LZSS compression offering a good compression ratio can be achieved by 

employing a byte-format LZSS compression. The byte-format LZSS compression em-

ployed in this paper is quite naïve and can be improved in many ways. The actual search 

time improvement of a byte-format LZSS compression over a bit-format one such as 

gzip is yet to be verified.

Third, although suffix trees can find long matches in LZSS-based compression 

method, in practice they are slower compared to the hash tables and tend to find old 

matches with large offsets. This may be improved by changing the suffix tree insertion al-

gorithm to update the edges it passes to point to newer positions in text, but this has not 

been implemented. Still, combination of suffix trees and hash tables can improve the 

compression ratio, especially for the byte-format LZSS compression. There are several 

possible techniques to improve the performance of the LZSS search structure, but the re-

search and comparison of possible techniques is outside of the scope of this work. 

7 Further Research
The restricted scope of this work left several important questions on the subject 

unanswered. 

First of all, before trying to improve the search speed in DEFLATE ([16], [4]) 

compressed files, one could verify how slow or how fast it is. Libraries providing de-

coded “streams” to DEFLATE-encoded files exist in many programming languages. Of 

course, such streams can only be used in pattern matching algorithms traversing the input 

from left to right, such as the KMP algorithm ([6]), and are not applicable to e.g. the 

Boyer-Moore one ([9]), since they decode every character of the input. To answer this 
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question, one could compare the search time using the KMP algorithm inside a DE-

FLATE-compressed file with the speed of the KMP pattern matching and the Boyer-

Moore pattern matching in an uncompressed text. In addition, there are methods to ad-

apt the Boyer-Moore pattern matching algorithm to search Huffman encoded text, e.g. 

([20]). It is probably possible to adapt the Boyer-Moore algorithm to search inside DE-

FLATE-encoded text as well.

A second question is to determine which component is the bottleneck of the DE-

FLATE-compressed pattern matching: decoding LZ77/LZSS or decoding the binary 

Huffman-encoded symbols? To answer this question one could compare the speed of a 

compressed pattern matching inside a LZSS-compressed text with that in a DEFLATE-

compressed text.
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Appendix A
Running the Program

The program is implemented in Java and as such is invoked using 'java' command: 

$ java -cp <path to the program's classes>  cs.main.Main 
<command line arguments>

Note that no special efforts have been done to reduce the amount of the used 

memory, preferring the simplicity of the implementation. For instance, the program just 

reads the whole file into its memory and then starts to either compress or search it. To 

increase the default Java heap size for large files, the following java options can be 

used: “-Xms” for initial Java heap size and “-Xmx” for maximum heap size, e.g. “-Xm-

s64m -Xmx1500m”.

The program's command line options can be grouped into 4 “commands”. Each 

“command” has its own main option followed by command-specific arguments. In addi-

tion, option '-help' prints the synopsis of all allowed options. 

The “commands” are:

Main option Description
-compress Compresses a file and writes the compressed one.

In addition, verifies the compression by internally decompressing the 
compressed text and comparing it to the original text.

-search Search inside a compressed file

-runcompressions For statistics gathering: 
Run compression on all files in a directory and output the compression 
ratio and compression time in a tabular format.
In addition, verifies the compression of each file by internally 
decompressing the compressed text and comparing it to the original text.

-runsearches For statistics gathering:
Run compression and then run a specified number of searches inside a 
compressed file and output the search time in a tabular format.

The arguments of each “command” are:

Option Description
-compress

-file <file> Original uncompressed file. 
The output file will have the following name: 
<original file name>.<compression method name>

-comprmethod One of: BIT_LZSS|BYTE_LZSS|MANBER|SHAPIRA_KLEIN
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-configfile <config file> Optional: the configuration file as described in Appendix B.

-search
-file <file> Compressed file. 

Should have an extension bearing the name of the used compression 
method.
The compression method will be determined from the extension.
Can be used with all compression methods besides “BIT_LZSS”.

-decompressandsearch Optional: if present, use the “decompress and search” strategy.
Can be used only with “BYTE_LZSS” compression method.

-pattern <pattern> The searched pattern

-configfile <config file> Optional: the configuration file as described in Appendix B.

-runcompressions
-dir <directory> Directory containing uncompressed files

-comprmethod <comma-
separated list of 
compression methods>

Optional: list of compression methods to run. 
Allowed compression methods: 
BIT_LZSS, BYTE_LZSS, MANBER, SHAPIRA_KLEIN, 
for example: “BIT_LZSS, MANBER”.
Compression ratio and compression time will be output for each 
compression method and for each file, in a tabular format.
If missing, all compression methods will be run.

-gzdir <directory with 
gzipped files>

Directory containing files with “.gz” extension.
It is used to verify the compression ratio of “gzip” command.

-configfile <config file> Optional: the configuration file as described in Appendix B.

-runsearches
-dir <directory> Directory containing uncompressed files.

The files will be internally compressed, and then a random substring of an 
original text will be searched in the compressed text.

-decompressandsearch Optional: if present, use the “decompress and search” strategy to search in 
a text compressed with “BYTE_LZSS” method.

-comprmethod <comma-
separated list of 
compression methods>

Optional: list of compression methods to run. 
Allowed compression methods: 
BYTE_LZSS, MANBER, SHAPIRA_KLEIN, 
for example: “BYTE_LZSS, MANBER”.
Search times will be output for each compression method and for each file, 
in a tabular format.
If missing, all allowed compression methods will be tried.

-ptrnlen <pattern length> Optional: the length of a random search pattern.
Overrides “run.search.ptrn_max_length” and 
“run.search.ptrn_min_length” configuration properties, described in 
Appendix B.
The search pattern will always be a substring of an original text.

-searchcnt <search count> Optional: the number of search patterns to search.
Overrides “run.search.ptrn_cnt” configuration property, described in 
Appendix B.

-configfile <config file> Optional: the configuration file as described in Appendix B.
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Appendix B
Configuring the Program

The algorithms implemented by the program can be configured using a properties 

file. Each property entry has a format <property name> = <value>.  Lines pre-

fixed with '#' are comments. Property names are chosen to reflect both their domain 

and their meaning inside this domain. For instance, property name 

“manber.min_char_frequency” relates to Manber compression. 

Property “domain” names and their meaning:

run Configures how to gain statistics for statistics-gathering actions

manber Relates to Manber's compression

lzss Relates to LZSS compression

sk Relates to Shapira/Klein's compression

Available properties:

Property name Default 
value

Description

Search
run.search.ptrn_cnt 100 The number of random search patterns on which to test 

the search speed of a given compressed matching method

run.search.ptrn_max_length 10 The maximum allowed length for a random search 
pattern

run.search.ptrn_min_length 4 The minimum allowed length for a random search 
pattern

Manber Compression
manber.min_char_frequency 1 Characters with frequency below this one are considered 

'rare' and will be encoded with 2 bytes

manber.partition_improvement_t
rials

100 The number of trials to improve the initial partition of 
characters into 2 groups

LZSS and Shapira/Klein's 
Compression

lzss.max_text_window_size
sk.max_text_window_size

32000 The maximum allowed LZSS text window size

lzss.bit_level.min_word_length
lzss.byte_level.min_word_length
sk.min_word_length

4
3
3

Minimum length to be used in (offset, length) pair.
This is also the length of string prefix to be used as a 
hash key for hash-based implementation of a text 
window.
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lzss.byte_level.max_bits_for_offs
et
sk.byte_level.max_bits_for_offset

32 Encoding rules allowing the number of bits for an offset 
larger than this value will be cut off.
Note that in order to take an effect, this value should be 
more restrictive than 'max_text_window_size',
which also cuts off irrelevant rules.
Large value has no effect since no rule will be cut off 
based on this value.

lzss.byte_level.max_bits_for_len
gth
sk.byte_level.max_bits_for_lengt
h

16 Encoding rules allowing the number of bits for a length 
larger than this value will be cut off.
Large value has no effect since no rule will be cut off 
based on this value.

lzss.tw_impl.type
sk.tw_impl.type

ON_HAS
H_AND_
SUFFIX_
TREE

The type of the text window implementation.
Possible values:
- ON_HASH: hash based implementation
- ON_SUFFIX_TREE: suffix-trees based implementation
- ON_HASH_AND_SUFFIX_TREE: implementation 
using both hash and suffix trees

lzss.tw_impl.hash.max_bucket_s
ize
sk.tw_impl.hash.max_bucket_siz
e

5 For hash-based text window implementation: the size of 
a hash bucket.
This is the number of words stored for the same prefix

lzss.tw_impl.hash.common_strin
g_check_length
sk.tw_impl.hash.common_string
_check_length

10 For hash-based text window implementation: two 
matches are compared mostly by their matched length, 
the longer the better, but checking too many characters 
can be too slow.
This value specifies how many characters will be actually 
checked.
If both of compared matches have the same value of 
matched characters (but up to 
'common_string_check_length' ones), the most recent 
match will be preferred.
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